Files
FastDeploy/tools/README.md
yunyaoXYY 712d7fd71b [Quantization] Improve the usage of FastDeploy tools. (#660)
* Add PaddleOCR Support

* Add PaddleOCR Support

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Support

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Supports

* Add PaddleOCRv3 Suport

* Fix Rec diff

* Remove useless functions

* Remove useless comments

* Add PaddleOCRv2 Support

* Add PaddleOCRv3 & PaddleOCRv2 Support

* remove useless parameters

* Add utils of sorting det boxes

* Fix code naming convention

* Fix code naming convention

* Fix code naming convention

* Fix bug in the Classify process

* Imporve OCR Readme

* Fix diff in Cls model

* Update Model Download Link in Readme

* Fix diff in PPOCRv2

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Fix conflict

* Add readme for OCRResult

* Improve OCR readme

* Add OCRResult readme

* Improve OCR readme

* Improve OCR readme

* Add Model Quantization Demo

* Fix Model Quantization Readme

* Fix Model Quantization Readme

* Add the function to do PTQ quantization

* Improve quant tools readme

* Improve quant tool readme

* Improve quant tool readme

* Add PaddleInference-GPU for OCR Rec model

* Add QAT method to fastdeploy-quantization tool

* Remove examples/slim for now

* Move configs folder

* Add Quantization Support for Classification Model

* Imporve ways of importing preprocess

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Improve Quantization configs and readme

* Add support for multi-inputs model

* Add backends and params file for YOLOv7

* Add quantized model deployment support for YOLO series

* Fix YOLOv5 quantize readme

* Fix YOLO quantize readme

* Fix YOLO quantize readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Fix bug, change Fronted to ModelFormat

* Change Fronted to ModelFormat

* Add examples to deploy quantized paddleclas models

* Fix readme

* Add quantize Readme

* Add quantize Readme

* Add quantize Readme

* Modify readme of quantization tools

* Modify readme of quantization tools

* Improve quantization tools readme

* Improve quantization readme

* Improve PaddleClas quantized model deployment  readme

* Add PPYOLOE-l quantized deployment examples

* Improve quantization tools readme

* Improve Quantize Readme

* Fix conflicts

* Fix conflicts

* improve readme

* Improve quantization tools and readme

* Improve quantization tools and readme

* Add quantized deployment examples for PaddleSeg model

* Fix cpp readme

* Fix memory leak of reader_wrapper function

* Fix model file name in PaddleClas quantization examples

* Update Runtime and E2E benchmark

* Update Runtime and E2E benchmark

* Rename quantization tools to auto compression tools

* Remove PPYOLOE data when deployed on MKLDNN

* Fix readme

* Support PPYOLOE with OR without NMS and update readme

* Update Readme

* Update configs and readme

* Update configs and readme

* Add Paddle-TensorRT backend in quantized model deploy examples

* Support PPYOLOE+ series

* Add reused_input_tensors for PPYOLOE

* Improve fastdeploy tools usage

* improve fastdeploy tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* remove modify

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Improve fastdeploy auto compression tool

* Remove extra requirements for fd-auto-compress package

* Imporve fastdeploy-tools package

* Install fastdeploy-tools package when build fastdeploy-python

* Imporve quantization readme
2022-11-23 10:13:50 +08:00

76 lines
2.6 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# FastDeploy 工具包
FastDeploy提供了一系列高效易用的工具优化部署体验, 提升推理性能.
- [1.自动压缩工具包](#1)
- [2.模型转换工具包](#2)
<p id="1"></p>
## 一键模型自动化压缩工具
FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了一键模型自动化压缩的工具, 用户可以轻松地通过一行命令对模型进行自动化压缩, 并在FastDeploy上部署压缩后的模型, 提升推理速度. 本文档将以FastDeploy一键模型自动化压缩工具为例, 介绍如何安装此工具, 并提供相应的使用文档.
### 环境准备
1.用户参考PaddlePaddle官网, 安装develop版本
```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
```
2.安装PaddleSlim develop版本
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim
python setup.py install
```
3.安装fastdeploy-tools工具包
```bash
# 通过pip安装fastdeploy-tools. 此工具包目前支持模型一键自动化压缩和模型转换的功能.
# FastDeploy的python包已包含此工具, 不需重复安装.
pip install fastdeploy-tools==0.0.0
```
### 一键模型自动化压缩工具的使用
按照以上步骤成功安装后,即可使用FastDeploy一键模型自动化压缩工具, 示例如下.
```bash
fastdeploy --auto_compress --config_path=./configs/detection/yolov5s_quant.yaml --method='PTQ' --save_dir='./yolov5s_ptq_model/'
```
详细使用文档请参考[FastDeploy一键模型自动化压缩工具](./common_tools/auto_compression/README.md)
<p id="2"></p>
## 模型转换工具
FastDeploy 基于 X2Paddle 为用户提供了模型转换的工具, 用户可以轻松地通过一行命令将外部框架模型快速迁移至飞桨框架,目前支持 ONNX、TensorFlow 以及 Caffe支持大部分主流的CV和NLP的模型转换。
### 环境准备
1. PaddlePaddle 安装,可参考如下文档快速安装
```
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
```
2. X2Paddle 安装
如需使用稳定版本可通过pip方式安装X2Paddle
```shell
pip install x2paddle
```
如需体验最新功能,可使用源码安装方式:
```shell
git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
python setup.py install
```
### 使用方式
按照以上步骤成功安装后,即可使用 FastDeploy 一键转换工具, 示例如下:
```bash
fastdeploy --convert --framework onnx --model yolov5s.onnx --save_dir pd_model
```
更多详细内容可参考[X2Paddle](https://github.com/PaddlePaddle/X2Paddle)