mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model * Add backends and params file for YOLOv7 * Add quantized model deployment support for YOLO series * Fix YOLOv5 quantize readme * Fix YOLO quantize readme * Fix YOLO quantize readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Fix bug, change Fronted to ModelFormat * Change Fronted to ModelFormat * Add examples to deploy quantized paddleclas models * Fix readme * Add quantize Readme * Add quantize Readme * Add quantize Readme * Modify readme of quantization tools * Modify readme of quantization tools * Improve quantization tools readme * Improve quantization readme * Improve PaddleClas quantized model deployment readme * Add PPYOLOE-l quantized deployment examples * Improve quantization tools readme * Improve Quantize Readme * Fix conflicts * Fix conflicts * improve readme * Improve quantization tools and readme * Improve quantization tools and readme * Add quantized deployment examples for PaddleSeg model * Fix cpp readme * Fix memory leak of reader_wrapper function * Fix model file name in PaddleClas quantization examples * Update Runtime and E2E benchmark * Update Runtime and E2E benchmark * Rename quantization tools to auto compression tools * Remove PPYOLOE data when deployed on MKLDNN * Fix readme * Support PPYOLOE with OR without NMS and update readme * Update Readme * Update configs and readme * Update configs and readme * Add Paddle-TensorRT backend in quantized model deploy examples * Support PPYOLOE+ series * Add reused_input_tensors for PPYOLOE * Improve fastdeploy tools usage * improve fastdeploy tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * remove modify * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Improve fastdeploy auto compression tool * Remove extra requirements for fd-auto-compress package * Imporve fastdeploy-tools package * Install fastdeploy-tools package when build fastdeploy-python * Imporve quantization readme
2.6 KiB
Executable File
2.6 KiB
Executable File
FastDeploy 工具包
FastDeploy提供了一系列高效易用的工具优化部署体验, 提升推理性能.
一键模型自动化压缩工具
FastDeploy基于PaddleSlim的Auto Compression Toolkit(ACT), 给用户提供了一键模型自动化压缩的工具, 用户可以轻松地通过一行命令对模型进行自动化压缩, 并在FastDeploy上部署压缩后的模型, 提升推理速度. 本文档将以FastDeploy一键模型自动化压缩工具为例, 介绍如何安装此工具, 并提供相应的使用文档.
环境准备
1.用户参考PaddlePaddle官网, 安装develop版本
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
2.安装PaddleSlim develop版本
git clone https://github.com/PaddlePaddle/PaddleSlim.git & cd PaddleSlim
python setup.py install
3.安装fastdeploy-tools工具包
# 通过pip安装fastdeploy-tools. 此工具包目前支持模型一键自动化压缩和模型转换的功能.
# FastDeploy的python包已包含此工具, 不需重复安装.
pip install fastdeploy-tools==0.0.0
一键模型自动化压缩工具的使用
按照以上步骤成功安装后,即可使用FastDeploy一键模型自动化压缩工具, 示例如下.
fastdeploy --auto_compress --config_path=./configs/detection/yolov5s_quant.yaml --method='PTQ' --save_dir='./yolov5s_ptq_model/'
详细使用文档请参考FastDeploy一键模型自动化压缩工具
模型转换工具
FastDeploy 基于 X2Paddle 为用户提供了模型转换的工具, 用户可以轻松地通过一行命令将外部框架模型快速迁移至飞桨框架,目前支持 ONNX、TensorFlow 以及 Caffe,支持大部分主流的CV和NLP的模型转换。
环境准备
- PaddlePaddle 安装,可参考如下文档快速安装
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html
- X2Paddle 安装
如需使用稳定版本,可通过pip方式安装X2Paddle:
pip install x2paddle
如需体验最新功能,可使用源码安装方式:
git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
python setup.py install
使用方式
按照以上步骤成功安装后,即可使用 FastDeploy 一键转换工具, 示例如下:
fastdeploy --convert --framework onnx --model yolov5s.onnx --save_dir pd_model
更多详细内容可参考X2Paddle