mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
1.9 KiB
Executable File
1.9 KiB
Executable File
English | 简体中文
YOLOv5s量化模型 Python部署示例
infer.py
in this directory can help you quickly complete the inference acceleration of YOLOv5s quantization model deployment on CPU/GPU.
Deployment Preparations
FastDeploy Environment Preparations
-
- For the software and hardware requirements, please refer to FastDeploy Environment Requirements.
-
- For the installation of FastDeploy Python whl package, please refer to FastDeploy Python Installation.
Quantized Model Preparations
-
- You can directly use the quantized model provided by FastDeploy for deployment..
-
- You can use one-click automatical compression tool provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.
Take the Quantized YOLOv5s Model as an example for Deployment
# Download sample deployment code.
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov5/quantize/python
# Download the yolov5s quantized model and test images provided by FastDeloy.
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar
tar -xvf yolov5s_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# Use ONNX Runtime inference quantization model on CPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device cpu --backend ort
# Use TensorRT inference quantization model on GPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend trt
# Use Paddle-TensorRT inference quantization model on GPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend pptrt