Files
FastDeploy/examples/vision/detection/yolov5/quantize/python/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

1.9 KiB
Executable File

English | 简体中文

YOLOv5s量化模型 Python部署示例

infer.py in this directory can help you quickly complete the inference acceleration of YOLOv5s quantization model deployment on CPU/GPU.

Deployment Preparations

FastDeploy Environment Preparations

Quantized Model Preparations

    1. You can directly use the quantized model provided by FastDeploy for deployment..
    1. You can use one-click automatical compression tool provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.

Take the Quantized YOLOv5s Model as an example for Deployment

# Download sample deployment code.
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov5/quantize/python

# Download the yolov5s quantized model and test images provided by FastDeloy.
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar
tar -xvf yolov5s_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

# Use ONNX Runtime inference quantization model on CPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device cpu --backend ort
# Use TensorRT inference quantization model on GPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend trt
# Use Paddle-TensorRT inference quantization model on GPU.
python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend pptrt