English | [简体中文](README_CN.md) # YOLOv5s量化模型 Python部署示例 `infer.py` in this directory can help you quickly complete the inference acceleration of YOLOv5s quantization model deployment on CPU/GPU. ## Deployment Preparations ### FastDeploy Environment Preparations - 1. For the software and hardware requirements, please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). - 2. For the installation of FastDeploy Python whl package, please refer to [FastDeploy Python Installation](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). ### Quantized Model Preparations - 1. You can directly use the quantized model provided by FastDeploy for deployment.. - 2. You can use [one-click automatical compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment. ## Take the Quantized YOLOv5s Model as an example for Deployment ```bash # Download sample deployment code. git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/detection/yolov5/quantize/python # Download the yolov5s quantized model and test images provided by FastDeloy. wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s_quant.tar tar -xvf yolov5s_quant.tar wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # Use ONNX Runtime inference quantization model on CPU. python infer.py --model yolov5s_quant --image 000000014439.jpg --device cpu --backend ort # Use TensorRT inference quantization model on GPU. python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend trt # Use Paddle-TensorRT inference quantization model on GPU. python infer.py --model yolov5s_quant --image 000000014439.jpg --device gpu --backend pptrt ```