Files
FastDeploy/examples/vision/classification/yolov5cls/cpp/README.md
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00

91 lines
3.6 KiB
Markdown
Executable File

English | [简体中文](README_CN.md)
# YOLOv5Cls C++ Deployment Example
This directory provides examples that ` infer.cc` fast finishes the deployment of YOLOv5Cls models on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md).
Taking CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the official converted yolov5 model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU inference
./infer_demo yolov5n-cls.onnx 000000014439.jpg 0
# GPU inference
./infer_demo yolov5n-cls.onnx 000000014439.jpg 1
# TensorRT Inference on GPU
./infer_demo yolov5n-cls.onnx 000000014439.jpg 2
```
The result returned after running is as follows
```bash
ClassifyResult(
label_ids: 265,
scores: 0.196327,
)
```
The above command works for Linux or MacOS. Refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) for SDK use-pattern in Windows.
## YOLOv5Cls C++ Interface
### YOLOv5Cls Class
```c++
fastdeploy::vision::classification::YOLOv5Cls(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
YOLOv5Cls model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
> * **model_format**(ModelFormat): Model format. ONNX format by default
#### Predict Function
> ```c++
> YOLOv5Cls::Predict(cv::Mat* im, int topk = 1)
> ```
>
> Model prediction interface. Input images and output classification topk results directly.
>
> **Parameter**
>
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
> > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1
> **Return**
>
> > Return `fastdeploy.vision.ClassifyResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
## Other Documents
- [YOLOv5Cls Model Description](..)
- [YOLOv5Cls Python Deployment](../python)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)