English | [简体中文](README_CN.md) # YOLOv5Cls C++ Deployment Example This directory provides examples that ` infer.cc` fast finishes the deployment of YOLOv5Cls models on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). Taking CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download the official converted yolov5 model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg # CPU inference ./infer_demo yolov5n-cls.onnx 000000014439.jpg 0 # GPU inference ./infer_demo yolov5n-cls.onnx 000000014439.jpg 1 # TensorRT Inference on GPU ./infer_demo yolov5n-cls.onnx 000000014439.jpg 2 ``` The result returned after running is as follows ```bash ClassifyResult( label_ids: 265, scores: 0.196327, ) ``` The above command works for Linux or MacOS. Refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) for SDK use-pattern in Windows. ## YOLOv5Cls C++ Interface ### YOLOv5Cls Class ```c++ fastdeploy::vision::classification::YOLOv5Cls( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` YOLOv5Cls model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration) > * **model_format**(ModelFormat): Model format. ONNX format by default #### Predict Function > ```c++ > YOLOv5Cls::Predict(cv::Mat* im, int topk = 1) > ``` > > Model prediction interface. Input images and output classification topk results directly. > > **Parameter** > > > * **input_image**(np.ndarray): Input data in HWC or BGR format > > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1 > **Return** > > > Return `fastdeploy.vision.ClassifyResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure. ## Other Documents - [YOLOv5Cls Model Description](..) - [YOLOv5Cls Python Deployment](../python) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)