mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
80 lines
3.6 KiB
Markdown
80 lines
3.6 KiB
Markdown
# PP-TinyPose Python部署示例
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
本目录下提供`pptinypose_infer.py`快速完成PP-TinyPose在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例。执行如下脚本即可完成
|
||
|
||
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/python/README.md)
|
||
|
||
```bash
|
||
#下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/python
|
||
|
||
# 下载PP-TinyPose模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
|
||
tar -xvf PP_TinyPose_256x192_infer.tgz
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
|
||
|
||
# CPU推理
|
||
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu
|
||
# GPU推理
|
||
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu
|
||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True
|
||
```
|
||
|
||
运行完成可视化结果如下图所示
|
||
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
|
||
</div>
|
||
|
||
## PP-TinyPose Python接口
|
||
|
||
```python
|
||
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||
```
|
||
|
||
PP-TinyPose模型加载和初始化,其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 推理部署配置文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||
|
||
### predict函数
|
||
|
||
> ```python
|
||
> PPTinyPose.predict(input_image)
|
||
> ```
|
||
>
|
||
> 模型预测结口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||
|
||
> **返回**
|
||
>
|
||
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
### 类成员属性
|
||
#### 后处理参数
|
||
用户可按照自己的实际需求,修改下列后处理参数,从而影响最终的推理和部署效果
|
||
|
||
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
|
||
|
||
|
||
## 其它文档
|
||
|
||
- [PP-TinyPose 模型介绍](..)
|
||
- [PP-TinyPose C++部署](../cpp)
|
||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
|