Files
FastDeploy/examples/vision/keypointdetection/tiny_pose
huangjianhui b565c15bf7 [Model] Add tinypose single && pipeline model (#177)
* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-21 09:28:23 +08:00
..

PP-TinyPose 模型部署

模型版本说明

目前FastDeploy支持如下模型的部署

准备PP-TinyPose部署模型

PP-TinyPose模型导出请参考其文档说明模型导出

注意:PP-TinyPose导出的模型包含model.pdmodelmodel.pdiparamsinfer_cfg.yml三个文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息。

下载预训练模型

为了方便开发者的测试下面提供了PP-TinyPose导出的部分模型开发者可直接下载使用。

模型 参数文件大小 输入Shape AP(业务数据集) AP(COCO Val) FLOPS 单人推理耗时 (FP32) 单人推理耗时FP16)
PP-TinyPose-128x96 5.3MB 128x96 84.3% 58.4% 81.56 M 4.57ms 3.27ms
PP-TinyPose-256x192 5.3M 256x96 91.0% 68.3% 326.24M 14.07ms 8.33ms

说明

  • 关键点检测模型使用COCO train2017AI Challenger trainset作为训练集。使用COCO person keypoints val2017作为测试集。
  • 关键点检测模型的精度指标所依赖的检测框为ground truth标注得到。
  • 推理速度测试环境为 Qualcomm Snapdragon 865采用arm8下4线程推理得到。

更多信息请参考:PP-TinyPose 官方文档

详细部署文档