mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
144 lines
5.2 KiB
C++
144 lines
5.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void CpuInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void GpuInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void TrtInfer(const std::string& tinypose_model_dir,
|
|
const std::string& image_file) {
|
|
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
|
|
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
|
|
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
|
|
auto tinypose_option = fastdeploy::RuntimeOption();
|
|
tinypose_option.UseGpu();
|
|
tinypose_option.UseTrtBackend();
|
|
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
|
tinypose_model_file, tinypose_params_file, tinypose_config_file,
|
|
tinypose_option);
|
|
if (!tinypose_model.Initialized()) {
|
|
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::KeyPointDetectionResult res;
|
|
if (!tinypose_model.Predict(&im, &res)) {
|
|
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
|
return;
|
|
} else {
|
|
std::cout << "TinyPose Prediction Done!" << std::endl;
|
|
}
|
|
// 输出预测框结果
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
// 可视化预测结果
|
|
auto tinypose_vis_im =
|
|
fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
|
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
|
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (std::atoi(argv[3]) == 0) {
|
|
CpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 1) {
|
|
GpuInfer(argv[1], argv[2]);
|
|
} else if (std::atoi(argv[3]) == 2) {
|
|
TrtInfer(argv[1], argv[2]);
|
|
}
|
|
return 0;
|
|
}
|