// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void CpuInfer(const std::string& tinypose_model_dir, const std::string& image_file) { auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel"; auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams"; auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml"; auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose( tinypose_model_file, tinypose_params_file, tinypose_config_file); if (!tinypose_model.Initialized()) { std::cerr << "TinyPose Model Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::KeyPointDetectionResult res; if (!tinypose_model.Predict(&im, &res)) { std::cerr << "TinyPose Prediction Failed." << std::endl; return; } else { std::cout << "TinyPose Prediction Done!" << std::endl; } // 输出预测框结果 std::cout << res.Str() << std::endl; // 可视化预测结果 auto tinypose_vis_im = fastdeploy::vision::VisKeypointDetection(im, res, 0.5); cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im); std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg" << std::endl; } void GpuInfer(const std::string& tinypose_model_dir, const std::string& image_file) { auto option = fastdeploy::RuntimeOption(); option.UseGpu(); auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel"; auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams"; auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml"; auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose( tinypose_model_file, tinypose_params_file, tinypose_config_file, option); if (!tinypose_model.Initialized()) { std::cerr << "TinyPose Model Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::KeyPointDetectionResult res; if (!tinypose_model.Predict(&im, &res)) { std::cerr << "TinyPose Prediction Failed." << std::endl; return; } else { std::cout << "TinyPose Prediction Done!" << std::endl; } // 输出预测框结果 std::cout << res.Str() << std::endl; // 可视化预测结果 auto tinypose_vis_im = fastdeploy::vision::VisKeypointDetection(im, res, 0.5); cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im); std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg" << std::endl; } void TrtInfer(const std::string& tinypose_model_dir, const std::string& image_file) { auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel"; auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams"; auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml"; auto tinypose_option = fastdeploy::RuntimeOption(); tinypose_option.UseGpu(); tinypose_option.UseTrtBackend(); auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose( tinypose_model_file, tinypose_params_file, tinypose_config_file, tinypose_option); if (!tinypose_model.Initialized()) { std::cerr << "TinyPose Model Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::KeyPointDetectionResult res; if (!tinypose_model.Predict(&im, &res)) { std::cerr << "TinyPose Prediction Failed." << std::endl; return; } else { std::cout << "TinyPose Prediction Done!" << std::endl; } // 输出预测框结果 std::cout << res.Str() << std::endl; // 可视化预测结果 auto tinypose_vis_im = fastdeploy::vision::VisKeypointDetection(im, res, 0.5); cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im); std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg" << std::endl; } int main(int argc, char* argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image " "run_option, " "e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend." << std::endl; return -1; } if (std::atoi(argv[3]) == 0) { CpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 1) { GpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 2) { TrtInfer(argv[1], argv[2]); } return 0; }