mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
89 lines
3.6 KiB
Markdown
89 lines
3.6 KiB
Markdown
# PP-TinyPose C++部署示例
|
||
|
||
本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例
|
||
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/cpp/README.md)
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
|
||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试
|
||
|
||
```bash
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.3.0.tgz
|
||
tar xvf fastdeploy-linux-x64-gpu-0.3.0.tgz
|
||
cd fastdeploy-linux-x64-gpu-0.3.0/examples/vision/keypointdetection/tiny_pose/cpp/
|
||
mkdir build
|
||
cd build
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.3.0
|
||
make -j
|
||
|
||
# 下载PP-TinyPose模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
|
||
tar -xvf PP_TinyPose_256x192_infer.tgz
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
|
||
|
||
|
||
# CPU推理
|
||
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 0
|
||
# GPU推理
|
||
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 1
|
||
# GPU上TensorRT推理
|
||
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 2
|
||
```
|
||
|
||
运行完成可视化结果如下图所示
|
||
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
|
||
</div>
|
||
|
||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## PP-TinyPose C++接口
|
||
|
||
### PP-TinyPose类
|
||
|
||
```c++
|
||
fastdeploy::vision::keypointdetection::PPTinyPose(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const string& config_file,
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||
```
|
||
|
||
PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格式。
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 推理部署配置文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||
|
||
#### Predict函数
|
||
|
||
> ```c++
|
||
> PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出关键点检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
### 类成员属性
|
||
#### 后处理参数
|
||
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
|
||
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|