Files
FastDeploy/fastdeploy/entrypoints/openai/api_server.py
kevin 8aab4e367f [Feature] mm support prefix cache (#4134)
* support mm prefix caching

* update code

* fix mm_hashes

* support encoder cache

* add encoder cache

* update code

* update encoder cache

* fix features bug

* fix worker bug

* support processor cache, need to optimize yet

* refactor multimodal data cache

* update code

* update code

* update v1 scheduler

* update code

* update code

* update codestyle

* support turn off processor cache and encoder cache

* update pre-commit

* fix code

* solve review

* update code

* update code

* update test case

* set processor cache in GiB

* update test case

* support mm prefix caching for qwen model

* fix code style check

* update pre-commit

* fix unit test

* fix unit test

* add ci test case

* fix rescheduled bug

* change text_after_process to prompt_tokens

* fix unit test

* fix chat template

* change model path

* [EP] fix adapter bugs (#4572)

* Update expert_service.py

* Update common_engine.py

* Update expert_service.py

* fix v1 hang bug (#4573)

* fix import image_ops error on some platforms (#4559)

* [CLI]Update parameters in bench latecy cli tool and fix collect-env cli tool (#4558)

* add collect-env

* del files

* [Graph Optimization] Add dy_runnable and introduce cudagraph_switch_threshold for cudagraph mode switching (#4578)

* add new branch for sot

* reorder

* fix batch bug

* [XPU]Moe uses a new operator (#4585)

* [XPU]Moe uses a new operator

* [XPU]Moe uses a new operator

* update response

* [Feature] Support Paddle-OCR (#4396)

* init

* update code

* fix code style & disable thinking

* adapt for common_engine.update_mm_requests_chunk_size

* use 3d rope

* use flash_attn_unpadded

* opt siglip

* update to be compatible with the latest codebase

* fix typo

* optim OCR performance

* fix bug

* fix bug

* fix bug

* fix bug

* normlize name

* modify xpu rope

* revert logger

* fix bug

* fix bug

* fix bug

* support default_v1

* optim performance

* fix bug

---------

Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com>
Co-authored-by: zhangyue66 <zhangyue66@baidu.com>

* [DataProcessor] add reasoning_tokens into usage info (#4520)

* add reasoning_tokens into usage info initial commit

* add unit tests

* modify unit test

* modify and add unit tests

* fix unit test

* move steam usage to processor

* modify processor

* modify test_logprobs

* modify test_logprobs.py

* modify stream reasoning tokens accumulation

* fix unit test

* perf: Optimize task queue communication from engine to worker (#4531)

* perf: Optimize task queue communication from engine to worker

* perf: get_tasks to numpy

* perf: get_tasks remove to_numpy

* fix: request & replace ENV

* remove test_e2w_perf.py

* fix code style

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* Clean up ports after processing results (#4587)

* [CI] Add /re-run command in PR comments to restart failed CI workflows (#4593)

* [Others] api server exits when worker process is dead (#3271)

* [fix] fix terminal hangs when worker process is dead

* [chore] change sleep time of monitor

* [chore] remove redundant comments

* update docs

---------

Co-authored-by: ApplEOFDiscord <wwy640130@163.com>
Co-authored-by: ApplEOFDiscord <31272106+ApplEOFDiscord@users.noreply.github.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
Co-authored-by: yinwei <yinwei_hust@163.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: qwes5s5 <45442318+qwes5s5@users.noreply.github.com>
Co-authored-by: Ryan <zihaohuang@aliyun.com>
Co-authored-by: yyssys <atyangshuang@foxmail.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com>
Co-authored-by: zhangyue66 <zhangyue66@baidu.com>
Co-authored-by: kxz2002 <115912648+kxz2002@users.noreply.github.com>
Co-authored-by: SunLei <sunlei5788@gmail.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: Zhang Yulong <35552275+ZhangYulongg@users.noreply.github.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: 李泳桦 <39643373+liyonghua0910@users.noreply.github.com>
2025-10-27 17:39:51 +08:00

696 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import asyncio
import json
import os
import signal
import threading
import time
import traceback
from collections.abc import AsyncGenerator
from contextlib import asynccontextmanager
import uvicorn
import zmq
from fastapi import FastAPI, HTTPException, Request
from fastapi.exceptions import RequestValidationError
from fastapi.responses import JSONResponse, Response, StreamingResponse
from gunicorn.app.base import BaseApplication
from opentelemetry import trace
from prometheus_client import CONTENT_TYPE_LATEST
from fastdeploy.engine.args_utils import EngineArgs
from fastdeploy.engine.engine import LLMEngine
from fastdeploy.engine.expert_service import ExpertService
from fastdeploy.entrypoints.chat_utils import load_chat_template
from fastdeploy.entrypoints.engine_client import EngineClient
from fastdeploy.entrypoints.openai.protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
ControlSchedulerRequest,
EmbeddingRequest,
ErrorInfo,
ErrorResponse,
ModelList,
)
from fastdeploy.entrypoints.openai.serving_chat import OpenAIServingChat
from fastdeploy.entrypoints.openai.serving_completion import OpenAIServingCompletion
from fastdeploy.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from fastdeploy.entrypoints.openai.serving_models import ModelPath, OpenAIServingModels
from fastdeploy.entrypoints.openai.tool_parsers import ToolParserManager
from fastdeploy.entrypoints.openai.utils import UVICORN_CONFIG, make_arg_parser
from fastdeploy.envs import environment_variables
from fastdeploy.metrics.metrics import (
EXCLUDE_LABELS,
cleanup_prometheus_files,
get_filtered_metrics,
main_process_metrics,
)
from fastdeploy.metrics.trace_util import (
fd_start_span,
inject_to_metadata,
instrument,
lable_span,
)
from fastdeploy.utils import (
ExceptionHandler,
FlexibleArgumentParser,
StatefulSemaphore,
api_server_logger,
console_logger,
is_port_available,
retrive_model_from_server,
)
parser = make_arg_parser(FlexibleArgumentParser())
args = parser.parse_args()
console_logger.info(f"Number of api-server workers: {args.workers}.")
args.model = retrive_model_from_server(args.model, args.revision)
chat_template = load_chat_template(args.chat_template, args.model)
if args.tool_parser_plugin:
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
llm_engine = None
MAX_CONCURRENT_CONNECTIONS = (args.max_concurrency + args.workers - 1) // args.workers
connection_semaphore = StatefulSemaphore(MAX_CONCURRENT_CONNECTIONS)
class StandaloneApplication(BaseApplication):
def __init__(self, app, options=None):
self.application = app
self.options = options or {}
super().__init__()
def load_config(self):
config = {key: value for key, value in self.options.items() if key in self.cfg.settings and value is not None}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
return self.application
def load_engine():
"""
load engine
"""
global llm_engine
if llm_engine is not None:
return llm_engine
api_server_logger.info(f"FastDeploy LLM API server starting... {os.getpid()}, port: {args.port}")
engine_args = EngineArgs.from_cli_args(args)
engine = LLMEngine.from_engine_args(engine_args)
if not engine.start(api_server_pid=args.port):
api_server_logger.error("Failed to initialize FastDeploy LLM engine, service exit now!")
return None
llm_engine = engine
return engine
def load_data_service():
"""
load data service
"""
global llm_engine
if llm_engine is not None:
return llm_engine
api_server_logger.info(f"FastDeploy LLM API server starting... {os.getpid()}, port: {args.port}")
engine_args = EngineArgs.from_cli_args(args)
config = engine_args.create_engine_config()
api_server_logger.info(f"local_data_parallel_id: {config.parallel_config}")
expert_service = ExpertService(config, config.parallel_config.local_data_parallel_id)
if not expert_service.start(args.port, config.parallel_config.local_data_parallel_id):
api_server_logger.error("Failed to initialize FastDeploy LLM expert service, service exit now!")
return None
llm_engine = expert_service
return expert_service
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
async context manager for FastAPI lifespan
"""
import logging
uvicorn_access = logging.getLogger("uvicorn.access")
uvicorn_access.handlers.clear()
# 使用 gunicorn 的格式
formatter = logging.Formatter("[%(asctime)s] [%(process)d] [INFO] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
handler = logging.StreamHandler()
handler.setFormatter(formatter)
uvicorn_access.addHandler(handler)
uvicorn_access.propagate = False
if args.tokenizer is None:
args.tokenizer = args.model
pid = args.port
api_server_logger.info(f"{pid}")
if args.served_model_name is not None:
served_model_names = args.served_model_name
verification = True
else:
served_model_names = args.model
verification = False
model_paths = [ModelPath(name=served_model_names, model_path=args.model, verification=verification)]
engine_client = EngineClient(
model_name_or_path=args.model,
tokenizer=args.tokenizer,
max_model_len=args.max_model_len,
tensor_parallel_size=args.tensor_parallel_size,
pid=pid,
port=int(args.engine_worker_queue_port[args.local_data_parallel_id]),
limit_mm_per_prompt=args.limit_mm_per_prompt,
mm_processor_kwargs=args.mm_processor_kwargs,
reasoning_parser=args.reasoning_parser,
data_parallel_size=args.data_parallel_size,
enable_logprob=args.enable_logprob,
workers=args.workers,
tool_parser=args.tool_call_parser,
enable_prefix_caching=args.enable_prefix_caching,
splitwise_role=args.splitwise_role,
max_processor_cache=args.max_processor_cache,
)
await engine_client.connection_manager.initialize()
app.state.dynamic_load_weight = args.dynamic_load_weight
model_handler = OpenAIServingModels(
model_paths,
args.max_model_len,
args.ips,
)
app.state.model_handler = model_handler
chat_handler = OpenAIServingChat(
engine_client,
app.state.model_handler,
pid,
args.ips,
args.max_waiting_time,
chat_template,
args.enable_mm_output,
args.tokenizer_base_url,
)
completion_handler = OpenAIServingCompletion(
engine_client,
app.state.model_handler,
pid,
args.ips,
args.max_waiting_time,
)
engine_args = EngineArgs.from_cli_args(args)
config = engine_args.create_engine_config(port_availability_check=False)
embedding_handler = OpenAIServingEmbedding(
engine_client,
app.state.model_handler,
config,
pid,
args.ips,
args.max_waiting_time,
chat_template,
)
engine_client.create_zmq_client(model=pid, mode=zmq.PUSH)
engine_client.pid = pid
app.state.engine_client = engine_client
app.state.chat_handler = chat_handler
app.state.completion_handler = completion_handler
app.state.embedding_handler = embedding_handler
global llm_engine
if llm_engine is not None:
llm_engine.engine.data_processor = engine_client.data_processor
yield
# close zmq
try:
await engine_client.connection_manager.close()
engine_client.zmq_client.close()
from prometheus_client import multiprocess
multiprocess.mark_process_dead(os.getpid())
api_server_logger.info(f"Closing metrics client pid: {pid}")
except Exception as e:
api_server_logger.warning(f"exit error: {e}, {str(traceback.format_exc())}")
app = FastAPI(lifespan=lifespan)
app.add_exception_handler(RequestValidationError, ExceptionHandler.handle_request_validation_exception)
app.add_exception_handler(Exception, ExceptionHandler.handle_exception)
instrument(app)
@asynccontextmanager
async def connection_manager():
"""
async context manager for connection manager
"""
try:
await asyncio.wait_for(connection_semaphore.acquire(), timeout=0.001)
yield
except asyncio.TimeoutError:
api_server_logger.info(f"Reach max request concurrency, semaphore status: {connection_semaphore.status()}")
raise HTTPException(
status_code=429, detail=f"Too many requests,current max concurrency is {args.max_concurrency}"
)
# TODO 传递真实引擎值 通过pid 获取状态
@app.get("/health")
def health(request: Request) -> Response:
"""Health check."""
status, msg = app.state.engine_client.check_health()
if not status:
return Response(content=msg, status_code=404)
status, msg = app.state.engine_client.is_workers_alive()
if not status:
return Response(content=msg, status_code=304)
return Response(status_code=200)
@app.get("/load")
async def list_all_routes():
"""
列出所有以/v1开头的路由信息
Args:
无参数
Returns:
dict: 包含所有符合条件的路由信息的字典,格式如下:
{
"routes": [
{
"path": str, # 路由路径
"methods": list, # 支持的HTTP方法列表已排序
"tags": list # 路由标签列表,默认为空列表
},
...
]
}
"""
routes_info = []
for route in app.routes:
# 直接检查路径是否以/v1开头
if route.path.startswith("/v1"):
methods = sorted(route.methods)
tags = getattr(route, "tags", []) or []
routes_info.append({"path": route.path, "methods": methods, "tags": tags})
return {"routes": routes_info}
@app.api_route("/ping", methods=["GET", "POST"])
def ping(raw_request: Request) -> Response:
"""Ping check. Endpoint required for SageMaker"""
return health(raw_request)
def wrap_streaming_generator(original_generator: AsyncGenerator):
"""
Wrap an async generator to release the connection semaphore when the generator is finished.
"""
async def wrapped_generator():
span = trace.get_current_span()
if span is not None and span.is_recording():
last_time = None
count = 0
try:
async for chunk in original_generator:
last_time = time.time()
# 首包捕获
if count == 0 and span is not None and span.is_recording():
last_time = time.time()
span.add_event("first_chunk", {"time": last_time})
count += 1
yield chunk
except Exception as e:
# 错误捕获
if span is not None and span.is_recording():
span.add_event("stream_error", {"time": time.time(), "error": str(e), "total_chunk": count})
span.record_exception(e)
span.set_status({"code": "ERROR", "description": str(e)})
raise
finally:
# 尾包捕获
if span is not None and span.is_recording() and count > 0:
span.add_event("last_chunk", {"time": last_time, "total_chunk": count})
api_server_logger.debug(f"release: {connection_semaphore.status()}")
connection_semaphore.release()
else:
try:
async for chunk in original_generator:
yield chunk
finally:
api_server_logger.debug(f"release: {connection_semaphore.status()}")
connection_semaphore.release()
return wrapped_generator
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""
Create a chat completion for the provided prompt and parameters.
"""
api_server_logger.debug(f"Chat Received request: {request.model_dump_json()}")
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.is_workers_alive()
if not status:
return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304)
try:
async with connection_manager():
inject_to_metadata(request)
lable_span(request)
generator = await app.state.chat_handler.create_chat_completion(request)
if isinstance(generator, ErrorResponse):
api_server_logger.debug(f"release: {connection_semaphore.status()}")
connection_semaphore.release()
return JSONResponse(content=generator.model_dump(), status_code=500)
elif isinstance(generator, ChatCompletionResponse):
api_server_logger.debug(f"release: {connection_semaphore.status()}")
connection_semaphore.release()
return JSONResponse(content=generator.model_dump())
else:
wrapped_generator = wrap_streaming_generator(generator)
return StreamingResponse(content=wrapped_generator(), media_type="text/event-stream")
except HTTPException as e:
api_server_logger.error(f"Error in chat completion: {str(e)}")
return JSONResponse(status_code=e.status_code, content={"detail": e.detail})
@app.post("/v1/completions")
async def create_completion(request: CompletionRequest):
"""
Create a completion for the provided prompt and parameters.
"""
api_server_logger.info(f"Completion Received request: {request.model_dump_json()}")
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.is_workers_alive()
if not status:
return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304)
try:
async with connection_manager():
lable_span(request)
generator = await app.state.completion_handler.create_completion(request)
if isinstance(generator, ErrorResponse):
connection_semaphore.release()
return JSONResponse(content=generator.model_dump(), status_code=500)
elif isinstance(generator, CompletionResponse):
connection_semaphore.release()
return JSONResponse(content=generator.model_dump())
else:
wrapped_generator = wrap_streaming_generator(generator)
return StreamingResponse(content=wrapped_generator(), media_type="text/event-stream")
except HTTPException as e:
return JSONResponse(status_code=e.status_code, content={"detail": e.detail})
@app.get("/v1/models")
async def list_models() -> Response:
"""
List all available models.
"""
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.is_workers_alive()
if not status:
return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304)
models = await app.state.model_handler.list_models()
if isinstance(models, ErrorResponse):
return JSONResponse(content=models.model_dump())
elif isinstance(models, ModelList):
return JSONResponse(content=models.model_dump())
@app.post("/v1/embeddings")
async def create_embedding(request: EmbeddingRequest):
"""
Create embeddings for the input texts
"""
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.is_workers_alive()
if not status:
return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304)
generator = await app.state.embedding_handler.create_embedding(request)
return JSONResponse(content=generator.model_dump())
@app.get("/update_model_weight")
def update_model_weight(request: Request) -> Response:
"""
update model weight
"""
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.update_model_weight()
if not status:
return Response(content=msg, status_code=404)
return Response(status_code=200)
else:
return Response(content="Dynamic Load Weight Disabled.", status_code=404)
@app.get("/clear_load_weight")
def clear_load_weight(request: Request) -> Response:
"""
clear model weight
"""
if app.state.dynamic_load_weight:
status, msg = app.state.engine_client.clear_load_weight()
if not status:
return Response(content=msg, status_code=404)
return Response(status_code=200)
else:
return Response(content="Dynamic Load Weight Disabled.", status_code=404)
def launch_api_server() -> None:
"""
启动http服务
"""
if not is_port_available(args.host, args.port):
raise Exception(f"The parameter `port`:{args.port} is already in use.")
api_server_logger.info(f"launch Fastdeploy api server... port: {args.port}")
api_server_logger.info(f"args: {args.__dict__}")
fd_start_span("FD_START")
options = {
"bind": f"{args.host}:{args.port}",
"workers": args.workers,
"worker_class": "uvicorn.workers.UvicornWorker",
"loglevel": "info",
"graceful_timeout": args.timeout_graceful_shutdown,
"timeout": args.timeout,
}
try:
StandaloneApplication(app, options).run()
except Exception as e:
api_server_logger.error(f"launch sync http server error, {e}, {str(traceback.format_exc())}")
metrics_app = FastAPI()
@metrics_app.get("/metrics")
async def metrics():
"""
metrics
"""
metrics_text = get_filtered_metrics(
EXCLUDE_LABELS,
extra_register_func=lambda reg: main_process_metrics.register_all(reg, workers=args.workers),
)
return Response(metrics_text, media_type=CONTENT_TYPE_LATEST)
@metrics_app.get("/config-info")
def config_info() -> Response:
"""
Get the current configuration of the API server.
"""
global llm_engine
if llm_engine is None:
return Response("Engine not loaded", status_code=500)
cfg = llm_engine.cfg
def process_object(obj):
if hasattr(obj, "__dict__"):
# 处理有__dict__属性的对象
return obj.__dict__
return None # 或其他默认处理
cfg_dict = {k: v for k, v in cfg.__dict__.items()}
env_dict = {k: v() for k, v in environment_variables.items()}
cfg_dict["env_config"] = env_dict
result_content = json.dumps(cfg_dict, default=process_object, ensure_ascii=False)
return Response(result_content, media_type="application/json")
def run_metrics_server():
"""
run metrics server
"""
uvicorn.run(metrics_app, host="0.0.0.0", port=args.metrics_port, log_config=UVICORN_CONFIG, log_level="error")
def launch_metrics_server():
"""Metrics server running the sub thread"""
if not is_port_available(args.host, args.metrics_port):
raise Exception(f"The parameter `metrics_port`:{args.metrics_port} is already in use.")
prom_dir = cleanup_prometheus_files(True)
os.environ["PROMETHEUS_MULTIPROC_DIR"] = prom_dir
metrics_server_thread = threading.Thread(target=run_metrics_server, daemon=True)
metrics_server_thread.start()
time.sleep(1)
controller_app = FastAPI()
@controller_app.post("/controller/reset_scheduler")
def reset_scheduler():
"""
reset scheduler
"""
global llm_engine
if llm_engine is None:
return Response("Engine not loaded", status_code=500)
llm_engine.engine.clear_data()
llm_engine.engine.scheduler.reset()
return Response("Scheduler Reset Successfully", status_code=200)
@controller_app.post("/controller/scheduler")
def control_scheduler(request: ControlSchedulerRequest):
"""
Control the scheduler behavior with the given parameters.
"""
content = ErrorResponse(error=ErrorInfo(message="Scheduler updated successfully", code=0))
global llm_engine
if llm_engine is None:
content.message = "Engine is not loaded"
content.code = 500
return JSONResponse(content=content.model_dump(), status_code=500)
if request.reset:
llm_engine.engine.clear_data()
llm_engine.engine.scheduler.reset()
if request.load_shards_num or request.reallocate_shard:
if hasattr(llm_engine.engine.scheduler, "update_config") and callable(
llm_engine.engine.scheduler.update_config
):
llm_engine.engine.scheduler.update_config(
load_shards_num=request.load_shards_num,
reallocate=request.reallocate_shard,
)
else:
content.message = "This scheduler doesn't support the `update_config()` method."
content.code = 400
return JSONResponse(content=content.model_dump(), status_code=400)
return JSONResponse(content=content.model_dump(), status_code=200)
def run_controller_server():
"""
run controller server
"""
uvicorn.run(
controller_app,
host="0.0.0.0",
port=args.controller_port,
log_config=UVICORN_CONFIG,
log_level="error",
)
def launch_controller_server():
"""Controller server running the sub thread"""
if args.controller_port < 0:
return
if not is_port_available(args.host, args.controller_port):
raise Exception(f"The parameter `controller_port`:{args.controller_port} is already in use.")
controller_server_thread = threading.Thread(target=run_controller_server, daemon=True)
controller_server_thread.start()
time.sleep(1)
def launch_worker_monitor():
"""
Detect whether worker process is alive. If not, stop the API serverby triggering llm_engine.
"""
def _monitor():
global llm_engine
while True:
if hasattr(llm_engine, "worker_proc") and llm_engine.worker_proc.poll() is not None:
console_logger.error(
f"Worker process has died in the background (code={llm_engine.worker_proc.returncode}). API server is forced to stop."
)
os.kill(os.getpid(), signal.SIGINT)
break
time.sleep(5)
worker_monitor_thread = threading.Thread(target=_monitor, daemon=True)
worker_monitor_thread.start()
time.sleep(1)
def main():
"""main函数"""
if args.local_data_parallel_id == 0:
if not load_engine():
return
else:
if not load_data_service():
return
api_server_logger.info("FastDeploy LLM engine initialized!\n")
console_logger.info(f"Launching metrics service at http://{args.host}:{args.metrics_port}/metrics")
console_logger.info(f"Launching chat completion service at http://{args.host}:{args.port}/v1/chat/completions")
console_logger.info(f"Launching completion service at http://{args.host}:{args.port}/v1/completions")
launch_worker_monitor()
launch_controller_server()
launch_metrics_server()
launch_api_server()
if __name__ == "__main__":
main()