""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import asyncio import json import os import signal import threading import time import traceback from collections.abc import AsyncGenerator from contextlib import asynccontextmanager import uvicorn import zmq from fastapi import FastAPI, HTTPException, Request from fastapi.exceptions import RequestValidationError from fastapi.responses import JSONResponse, Response, StreamingResponse from gunicorn.app.base import BaseApplication from opentelemetry import trace from prometheus_client import CONTENT_TYPE_LATEST from fastdeploy.engine.args_utils import EngineArgs from fastdeploy.engine.engine import LLMEngine from fastdeploy.engine.expert_service import ExpertService from fastdeploy.entrypoints.chat_utils import load_chat_template from fastdeploy.entrypoints.engine_client import EngineClient from fastdeploy.entrypoints.openai.protocol import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, CompletionResponse, ControlSchedulerRequest, EmbeddingRequest, ErrorInfo, ErrorResponse, ModelList, ) from fastdeploy.entrypoints.openai.serving_chat import OpenAIServingChat from fastdeploy.entrypoints.openai.serving_completion import OpenAIServingCompletion from fastdeploy.entrypoints.openai.serving_embedding import OpenAIServingEmbedding from fastdeploy.entrypoints.openai.serving_models import ModelPath, OpenAIServingModels from fastdeploy.entrypoints.openai.tool_parsers import ToolParserManager from fastdeploy.entrypoints.openai.utils import UVICORN_CONFIG, make_arg_parser from fastdeploy.envs import environment_variables from fastdeploy.metrics.metrics import ( EXCLUDE_LABELS, cleanup_prometheus_files, get_filtered_metrics, main_process_metrics, ) from fastdeploy.metrics.trace_util import ( fd_start_span, inject_to_metadata, instrument, lable_span, ) from fastdeploy.utils import ( ExceptionHandler, FlexibleArgumentParser, StatefulSemaphore, api_server_logger, console_logger, is_port_available, retrive_model_from_server, ) parser = make_arg_parser(FlexibleArgumentParser()) args = parser.parse_args() console_logger.info(f"Number of api-server workers: {args.workers}.") args.model = retrive_model_from_server(args.model, args.revision) chat_template = load_chat_template(args.chat_template, args.model) if args.tool_parser_plugin: ToolParserManager.import_tool_parser(args.tool_parser_plugin) llm_engine = None MAX_CONCURRENT_CONNECTIONS = (args.max_concurrency + args.workers - 1) // args.workers connection_semaphore = StatefulSemaphore(MAX_CONCURRENT_CONNECTIONS) class StandaloneApplication(BaseApplication): def __init__(self, app, options=None): self.application = app self.options = options or {} super().__init__() def load_config(self): config = {key: value for key, value in self.options.items() if key in self.cfg.settings and value is not None} for key, value in config.items(): self.cfg.set(key.lower(), value) def load(self): return self.application def load_engine(): """ load engine """ global llm_engine if llm_engine is not None: return llm_engine api_server_logger.info(f"FastDeploy LLM API server starting... {os.getpid()}, port: {args.port}") engine_args = EngineArgs.from_cli_args(args) engine = LLMEngine.from_engine_args(engine_args) if not engine.start(api_server_pid=args.port): api_server_logger.error("Failed to initialize FastDeploy LLM engine, service exit now!") return None llm_engine = engine return engine def load_data_service(): """ load data service """ global llm_engine if llm_engine is not None: return llm_engine api_server_logger.info(f"FastDeploy LLM API server starting... {os.getpid()}, port: {args.port}") engine_args = EngineArgs.from_cli_args(args) config = engine_args.create_engine_config() api_server_logger.info(f"local_data_parallel_id: {config.parallel_config}") expert_service = ExpertService(config, config.parallel_config.local_data_parallel_id) if not expert_service.start(args.port, config.parallel_config.local_data_parallel_id): api_server_logger.error("Failed to initialize FastDeploy LLM expert service, service exit now!") return None llm_engine = expert_service return expert_service @asynccontextmanager async def lifespan(app: FastAPI): """ async context manager for FastAPI lifespan """ import logging uvicorn_access = logging.getLogger("uvicorn.access") uvicorn_access.handlers.clear() # 使用 gunicorn 的格式 formatter = logging.Formatter("[%(asctime)s] [%(process)d] [INFO] %(message)s", datefmt="%Y-%m-%d %H:%M:%S") handler = logging.StreamHandler() handler.setFormatter(formatter) uvicorn_access.addHandler(handler) uvicorn_access.propagate = False if args.tokenizer is None: args.tokenizer = args.model pid = args.port api_server_logger.info(f"{pid}") if args.served_model_name is not None: served_model_names = args.served_model_name verification = True else: served_model_names = args.model verification = False model_paths = [ModelPath(name=served_model_names, model_path=args.model, verification=verification)] engine_client = EngineClient( model_name_or_path=args.model, tokenizer=args.tokenizer, max_model_len=args.max_model_len, tensor_parallel_size=args.tensor_parallel_size, pid=pid, port=int(args.engine_worker_queue_port[args.local_data_parallel_id]), limit_mm_per_prompt=args.limit_mm_per_prompt, mm_processor_kwargs=args.mm_processor_kwargs, reasoning_parser=args.reasoning_parser, data_parallel_size=args.data_parallel_size, enable_logprob=args.enable_logprob, workers=args.workers, tool_parser=args.tool_call_parser, enable_prefix_caching=args.enable_prefix_caching, splitwise_role=args.splitwise_role, max_processor_cache=args.max_processor_cache, ) await engine_client.connection_manager.initialize() app.state.dynamic_load_weight = args.dynamic_load_weight model_handler = OpenAIServingModels( model_paths, args.max_model_len, args.ips, ) app.state.model_handler = model_handler chat_handler = OpenAIServingChat( engine_client, app.state.model_handler, pid, args.ips, args.max_waiting_time, chat_template, args.enable_mm_output, args.tokenizer_base_url, ) completion_handler = OpenAIServingCompletion( engine_client, app.state.model_handler, pid, args.ips, args.max_waiting_time, ) engine_args = EngineArgs.from_cli_args(args) config = engine_args.create_engine_config(port_availability_check=False) embedding_handler = OpenAIServingEmbedding( engine_client, app.state.model_handler, config, pid, args.ips, args.max_waiting_time, chat_template, ) engine_client.create_zmq_client(model=pid, mode=zmq.PUSH) engine_client.pid = pid app.state.engine_client = engine_client app.state.chat_handler = chat_handler app.state.completion_handler = completion_handler app.state.embedding_handler = embedding_handler global llm_engine if llm_engine is not None: llm_engine.engine.data_processor = engine_client.data_processor yield # close zmq try: await engine_client.connection_manager.close() engine_client.zmq_client.close() from prometheus_client import multiprocess multiprocess.mark_process_dead(os.getpid()) api_server_logger.info(f"Closing metrics client pid: {pid}") except Exception as e: api_server_logger.warning(f"exit error: {e}, {str(traceback.format_exc())}") app = FastAPI(lifespan=lifespan) app.add_exception_handler(RequestValidationError, ExceptionHandler.handle_request_validation_exception) app.add_exception_handler(Exception, ExceptionHandler.handle_exception) instrument(app) @asynccontextmanager async def connection_manager(): """ async context manager for connection manager """ try: await asyncio.wait_for(connection_semaphore.acquire(), timeout=0.001) yield except asyncio.TimeoutError: api_server_logger.info(f"Reach max request concurrency, semaphore status: {connection_semaphore.status()}") raise HTTPException( status_code=429, detail=f"Too many requests,current max concurrency is {args.max_concurrency}" ) # TODO 传递真实引擎值 通过pid 获取状态 @app.get("/health") def health(request: Request) -> Response: """Health check.""" status, msg = app.state.engine_client.check_health() if not status: return Response(content=msg, status_code=404) status, msg = app.state.engine_client.is_workers_alive() if not status: return Response(content=msg, status_code=304) return Response(status_code=200) @app.get("/load") async def list_all_routes(): """ 列出所有以/v1开头的路由信息 Args: 无参数 Returns: dict: 包含所有符合条件的路由信息的字典,格式如下: { "routes": [ { "path": str, # 路由路径 "methods": list, # 支持的HTTP方法列表,已排序 "tags": list # 路由标签列表,默认为空列表 }, ... ] } """ routes_info = [] for route in app.routes: # 直接检查路径是否以/v1开头 if route.path.startswith("/v1"): methods = sorted(route.methods) tags = getattr(route, "tags", []) or [] routes_info.append({"path": route.path, "methods": methods, "tags": tags}) return {"routes": routes_info} @app.api_route("/ping", methods=["GET", "POST"]) def ping(raw_request: Request) -> Response: """Ping check. Endpoint required for SageMaker""" return health(raw_request) def wrap_streaming_generator(original_generator: AsyncGenerator): """ Wrap an async generator to release the connection semaphore when the generator is finished. """ async def wrapped_generator(): span = trace.get_current_span() if span is not None and span.is_recording(): last_time = None count = 0 try: async for chunk in original_generator: last_time = time.time() # 首包捕获 if count == 0 and span is not None and span.is_recording(): last_time = time.time() span.add_event("first_chunk", {"time": last_time}) count += 1 yield chunk except Exception as e: # 错误捕获 if span is not None and span.is_recording(): span.add_event("stream_error", {"time": time.time(), "error": str(e), "total_chunk": count}) span.record_exception(e) span.set_status({"code": "ERROR", "description": str(e)}) raise finally: # 尾包捕获 if span is not None and span.is_recording() and count > 0: span.add_event("last_chunk", {"time": last_time, "total_chunk": count}) api_server_logger.debug(f"release: {connection_semaphore.status()}") connection_semaphore.release() else: try: async for chunk in original_generator: yield chunk finally: api_server_logger.debug(f"release: {connection_semaphore.status()}") connection_semaphore.release() return wrapped_generator @app.post("/v1/chat/completions") async def create_chat_completion(request: ChatCompletionRequest): """ Create a chat completion for the provided prompt and parameters. """ api_server_logger.debug(f"Chat Received request: {request.model_dump_json()}") if app.state.dynamic_load_weight: status, msg = app.state.engine_client.is_workers_alive() if not status: return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304) try: async with connection_manager(): inject_to_metadata(request) lable_span(request) generator = await app.state.chat_handler.create_chat_completion(request) if isinstance(generator, ErrorResponse): api_server_logger.debug(f"release: {connection_semaphore.status()}") connection_semaphore.release() return JSONResponse(content=generator.model_dump(), status_code=500) elif isinstance(generator, ChatCompletionResponse): api_server_logger.debug(f"release: {connection_semaphore.status()}") connection_semaphore.release() return JSONResponse(content=generator.model_dump()) else: wrapped_generator = wrap_streaming_generator(generator) return StreamingResponse(content=wrapped_generator(), media_type="text/event-stream") except HTTPException as e: api_server_logger.error(f"Error in chat completion: {str(e)}") return JSONResponse(status_code=e.status_code, content={"detail": e.detail}) @app.post("/v1/completions") async def create_completion(request: CompletionRequest): """ Create a completion for the provided prompt and parameters. """ api_server_logger.info(f"Completion Received request: {request.model_dump_json()}") if app.state.dynamic_load_weight: status, msg = app.state.engine_client.is_workers_alive() if not status: return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304) try: async with connection_manager(): lable_span(request) generator = await app.state.completion_handler.create_completion(request) if isinstance(generator, ErrorResponse): connection_semaphore.release() return JSONResponse(content=generator.model_dump(), status_code=500) elif isinstance(generator, CompletionResponse): connection_semaphore.release() return JSONResponse(content=generator.model_dump()) else: wrapped_generator = wrap_streaming_generator(generator) return StreamingResponse(content=wrapped_generator(), media_type="text/event-stream") except HTTPException as e: return JSONResponse(status_code=e.status_code, content={"detail": e.detail}) @app.get("/v1/models") async def list_models() -> Response: """ List all available models. """ if app.state.dynamic_load_weight: status, msg = app.state.engine_client.is_workers_alive() if not status: return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304) models = await app.state.model_handler.list_models() if isinstance(models, ErrorResponse): return JSONResponse(content=models.model_dump()) elif isinstance(models, ModelList): return JSONResponse(content=models.model_dump()) @app.post("/v1/embeddings") async def create_embedding(request: EmbeddingRequest): """ Create embeddings for the input texts """ if app.state.dynamic_load_weight: status, msg = app.state.engine_client.is_workers_alive() if not status: return JSONResponse(content={"error": "Worker Service Not Healthy"}, status_code=304) generator = await app.state.embedding_handler.create_embedding(request) return JSONResponse(content=generator.model_dump()) @app.get("/update_model_weight") def update_model_weight(request: Request) -> Response: """ update model weight """ if app.state.dynamic_load_weight: status, msg = app.state.engine_client.update_model_weight() if not status: return Response(content=msg, status_code=404) return Response(status_code=200) else: return Response(content="Dynamic Load Weight Disabled.", status_code=404) @app.get("/clear_load_weight") def clear_load_weight(request: Request) -> Response: """ clear model weight """ if app.state.dynamic_load_weight: status, msg = app.state.engine_client.clear_load_weight() if not status: return Response(content=msg, status_code=404) return Response(status_code=200) else: return Response(content="Dynamic Load Weight Disabled.", status_code=404) def launch_api_server() -> None: """ 启动http服务 """ if not is_port_available(args.host, args.port): raise Exception(f"The parameter `port`:{args.port} is already in use.") api_server_logger.info(f"launch Fastdeploy api server... port: {args.port}") api_server_logger.info(f"args: {args.__dict__}") fd_start_span("FD_START") options = { "bind": f"{args.host}:{args.port}", "workers": args.workers, "worker_class": "uvicorn.workers.UvicornWorker", "loglevel": "info", "graceful_timeout": args.timeout_graceful_shutdown, "timeout": args.timeout, } try: StandaloneApplication(app, options).run() except Exception as e: api_server_logger.error(f"launch sync http server error, {e}, {str(traceback.format_exc())}") metrics_app = FastAPI() @metrics_app.get("/metrics") async def metrics(): """ metrics """ metrics_text = get_filtered_metrics( EXCLUDE_LABELS, extra_register_func=lambda reg: main_process_metrics.register_all(reg, workers=args.workers), ) return Response(metrics_text, media_type=CONTENT_TYPE_LATEST) @metrics_app.get("/config-info") def config_info() -> Response: """ Get the current configuration of the API server. """ global llm_engine if llm_engine is None: return Response("Engine not loaded", status_code=500) cfg = llm_engine.cfg def process_object(obj): if hasattr(obj, "__dict__"): # 处理有__dict__属性的对象 return obj.__dict__ return None # 或其他默认处理 cfg_dict = {k: v for k, v in cfg.__dict__.items()} env_dict = {k: v() for k, v in environment_variables.items()} cfg_dict["env_config"] = env_dict result_content = json.dumps(cfg_dict, default=process_object, ensure_ascii=False) return Response(result_content, media_type="application/json") def run_metrics_server(): """ run metrics server """ uvicorn.run(metrics_app, host="0.0.0.0", port=args.metrics_port, log_config=UVICORN_CONFIG, log_level="error") def launch_metrics_server(): """Metrics server running the sub thread""" if not is_port_available(args.host, args.metrics_port): raise Exception(f"The parameter `metrics_port`:{args.metrics_port} is already in use.") prom_dir = cleanup_prometheus_files(True) os.environ["PROMETHEUS_MULTIPROC_DIR"] = prom_dir metrics_server_thread = threading.Thread(target=run_metrics_server, daemon=True) metrics_server_thread.start() time.sleep(1) controller_app = FastAPI() @controller_app.post("/controller/reset_scheduler") def reset_scheduler(): """ reset scheduler """ global llm_engine if llm_engine is None: return Response("Engine not loaded", status_code=500) llm_engine.engine.clear_data() llm_engine.engine.scheduler.reset() return Response("Scheduler Reset Successfully", status_code=200) @controller_app.post("/controller/scheduler") def control_scheduler(request: ControlSchedulerRequest): """ Control the scheduler behavior with the given parameters. """ content = ErrorResponse(error=ErrorInfo(message="Scheduler updated successfully", code=0)) global llm_engine if llm_engine is None: content.message = "Engine is not loaded" content.code = 500 return JSONResponse(content=content.model_dump(), status_code=500) if request.reset: llm_engine.engine.clear_data() llm_engine.engine.scheduler.reset() if request.load_shards_num or request.reallocate_shard: if hasattr(llm_engine.engine.scheduler, "update_config") and callable( llm_engine.engine.scheduler.update_config ): llm_engine.engine.scheduler.update_config( load_shards_num=request.load_shards_num, reallocate=request.reallocate_shard, ) else: content.message = "This scheduler doesn't support the `update_config()` method." content.code = 400 return JSONResponse(content=content.model_dump(), status_code=400) return JSONResponse(content=content.model_dump(), status_code=200) def run_controller_server(): """ run controller server """ uvicorn.run( controller_app, host="0.0.0.0", port=args.controller_port, log_config=UVICORN_CONFIG, log_level="error", ) def launch_controller_server(): """Controller server running the sub thread""" if args.controller_port < 0: return if not is_port_available(args.host, args.controller_port): raise Exception(f"The parameter `controller_port`:{args.controller_port} is already in use.") controller_server_thread = threading.Thread(target=run_controller_server, daemon=True) controller_server_thread.start() time.sleep(1) def launch_worker_monitor(): """ Detect whether worker process is alive. If not, stop the API serverby triggering llm_engine. """ def _monitor(): global llm_engine while True: if hasattr(llm_engine, "worker_proc") and llm_engine.worker_proc.poll() is not None: console_logger.error( f"Worker process has died in the background (code={llm_engine.worker_proc.returncode}). API server is forced to stop." ) os.kill(os.getpid(), signal.SIGINT) break time.sleep(5) worker_monitor_thread = threading.Thread(target=_monitor, daemon=True) worker_monitor_thread.start() time.sleep(1) def main(): """main函数""" if args.local_data_parallel_id == 0: if not load_engine(): return else: if not load_data_service(): return api_server_logger.info("FastDeploy LLM engine initialized!\n") console_logger.info(f"Launching metrics service at http://{args.host}:{args.metrics_port}/metrics") console_logger.info(f"Launching chat completion service at http://{args.host}:{args.port}/v1/chat/completions") console_logger.info(f"Launching completion service at http://{args.host}:{args.port}/v1/completions") launch_worker_monitor() launch_controller_server() launch_metrics_server() launch_api_server() if __name__ == "__main__": main()