mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
112 lines
5.7 KiB
Markdown
Executable File
112 lines
5.7 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
||
# AdaFace C++ Deployment Example
|
||
This directory provides examples that `infer_xxx.py` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT.
|
||
|
||
Taking AdaFace as an example, we demonstrate how `infer.cc` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT.
|
||
|
||
Before deployment, two steps require confirmation
|
||
|
||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
|
||
|
||
```bash
|
||
# “If the precompiled library does not contain this model, compile SDK from the latest code”
|
||
mkdir build
|
||
cd build
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||
make -j
|
||
|
||
# Download test images
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||
unzip face_demo.zip
|
||
|
||
# Run the following code if the model is in Paddle format
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
||
tar zxvf mobilefacenet_adaface.tgz -C ./
|
||
# CPU inference
|
||
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||
face_0.jpg face_1.jpg face_2.jpg 0
|
||
|
||
# GPU inference
|
||
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||
face_0.jpg face_1.jpg face_2.jpg 1
|
||
|
||
# GPU上TensorRT推理
|
||
./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||
face_0.jpg face_1.jpg face_2.jpg 2
|
||
|
||
# KunlunXin XPU inference
|
||
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
||
mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
||
face_0.jpg face_1.jpg face_2.jpg 3
|
||
```
|
||
|
||
The visualized result after running is as follows
|
||
|
||
<div width="700">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
||
</div>
|
||
|
||
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
|
||
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## AdaFace C++ Interface
|
||
|
||
### AdaFace Class
|
||
|
||
```c++
|
||
fastdeploy::vision::faceid::AdaFace(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||
```
|
||
|
||
AdaFace model loading and initialization, model_file and params_file are in PaddleInference format if using PaddleInference for inference;
|
||
model_file is in ONNX format and params_file is empty if using ONNXRuntime for inference
|
||
|
||
|
||
#### Predict Function
|
||
|
||
> ```c++
|
||
> AdaFace::Predict(cv::Mat* im, FaceRecognitionResult* result)
|
||
> ```
|
||
>
|
||
> Model prediction interface. Input images and output detection results.
|
||
>
|
||
> **Parameter**
|
||
>
|
||
> > * **im**: Input images in HWC or BGR format
|
||
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for FaceRecognitionResult.
|
||
|
||
### Revise pre-processing and post-processing parameters
|
||
Pre-processing and post-processing parameters can be changed by modifying the member variables of AdaFacePostprocessor and AdaFacePreprocessor.
|
||
|
||
#### AdaFacePreprocessor member variables (preprocessing parameters)
|
||
> > * **size**(vector<int>): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112].
|
||
Revise through AdaFacePreprocessor::SetSize(std::vector<int>& size)
|
||
> > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5].
|
||
Revise through AdaFacePreprocessor::SetAlpha(std::vector<float>& alpha)
|
||
> > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`,beta defaults to [-1.f, -1.f, -1.f],
|
||
Revise through AdaFacePreprocessor::SetBeta(std::vector<float>& beta)
|
||
> > * **permute**(bool): Whether to convert BGR to RGB in pre-processing. Default true.
|
||
Revise through AdaFacePreprocessor::SetPermute(bool permute)
|
||
|
||
#### AdaFacePostprocessor member variables (post-processing parameters)
|
||
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false.
|
||
Revise through AdaFacePostprocessor::SetL2Normalize(bool& l2_normalize)
|
||
|
||
- [Model Description](../../)
|
||
- [Python Deployment](../python)
|
||
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
|
||
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|