English | [简体中文](README_CN.md) # AdaFace C++ Deployment Example This directory provides examples that `infer_xxx.py` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT. Taking AdaFace as an example, we demonstrate how `infer.cc` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. ```bash # “If the precompiled library does not contain this model, compile SDK from the latest code” mkdir build cd build wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download test images wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip unzip face_demo.zip # Run the following code if the model is in Paddle format wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz tar zxvf mobilefacenet_adaface.tgz -C ./ # CPU inference ./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ face_0.jpg face_1.jpg face_2.jpg 0 # GPU inference ./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ face_0.jpg face_1.jpg face_2.jpg 1 # GPU上TensorRT推理 ./infer_adaface_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ face_0.jpg face_1.jpg face_2.jpg 2 # KunlunXin XPU inference ./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ face_0.jpg face_1.jpg face_2.jpg 3 ``` The visualized result after running is as follows
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## AdaFace C++ Interface ### AdaFace Class ```c++ fastdeploy::vision::faceid::AdaFace( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` AdaFace model loading and initialization, model_file and params_file are in PaddleInference format if using PaddleInference for inference; model_file is in ONNX format and params_file is empty if using ONNXRuntime for inference #### Predict Function > ```c++ > AdaFace::Predict(cv::Mat* im, FaceRecognitionResult* result) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for FaceRecognitionResult. ### Revise pre-processing and post-processing parameters Pre-processing and post-processing parameters can be changed by modifying the member variables of AdaFacePostprocessor and AdaFacePreprocessor. #### AdaFacePreprocessor member variables (preprocessing parameters) > > * **size**(vector<int>): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]. Revise through AdaFacePreprocessor::SetSize(std::vector& size) > > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]. Revise through AdaFacePreprocessor::SetAlpha(std::vector& alpha) > > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`,beta defaults to [-1.f, -1.f, -1.f], Revise through AdaFacePreprocessor::SetBeta(std::vector& beta) > > * **permute**(bool): Whether to convert BGR to RGB in pre-processing. Default true. Revise through AdaFacePreprocessor::SetPermute(bool permute) #### AdaFacePostprocessor member variables (post-processing parameters) > > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false. Revise through AdaFacePostprocessor::SetL2Normalize(bool& l2_normalize) - [Model Description](../../) - [Python Deployment](../python) - [Vision Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)