Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/cpp/README.md
HCQ14 61c2f87e0c [Doc] Update English version of some documents (#1084)
* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2023-01-06 18:01:34 +08:00

71 lines
2.1 KiB
Markdown

English | [简体中文](README_CN.md)
# SCRFD C++ Deployment Example
This directory provides examples that `infer.cc` fast finishes the deployment of SCRFD on NPU.
Two steps before deployment:
1. The environment of software and hardware should meet the requirements.
2. Download the precompiled deployment repo or deploy the FastDeploy repository from scratch according to your development environment.
Refer to [RK2 generation NPU deployment repository compilation](../../../../../../docs/cn/build_and_install/rknpu2.md) for the steps above
## Generate the base directory file
It consists of the following parts
```text
.
├── CMakeLists.txt
├── build # Compile folder
├── image # The folder to save images
├── infer.cc
├── model # The folder to save model files
└── thirdpartys # The folder to save sdk
```
Generate the directory first
```bash
mkdir build
mkdir images
mkdir model
mkdir thirdpartys
```
## Compile
### Compile and copy the SDK into the thirdpartys folder
Refer to [RK2 generation NPU deployment repository compilation](../../../../../../docs/cn/build_and_install/rknpu2.md). It will enerate fastdeploy-0.7.0 directory in the build directory after compilation. Move it to the thirdpartys directory.
### Copy the model files to the model folder
Refer to [SCRFD model conversion](../README.md) to convert SCRFD ONNX model to RKNN model and move it to the model folder.
### Prepare test images to the image folder
```bash
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
cp test_lite_face_detector_3.jpg ./images
```
### Compile example
```bash
cd build
cmake ..
make -j8
make install
```
## Running routines
```bash
cd ./build/install
export LD_LIBRARY_PATH=${PWD}/lib:${LD_LIBRARY_PATH}
./rknpu_test
```
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301789-1981d065-208f-4a6b-857c-9a0f9a63e0b1.jpg">
- [Model Description](../../README.md)
- [Python Deployment](../python/README.md)
- [Vision Model Prediction Results](../../../../../../docs/api/vision_results/README.md)