Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/cpp/README.md
HCQ14 61c2f87e0c [Doc] Update English version of some documents (#1084)
* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2023-01-06 18:01:34 +08:00

2.1 KiB

English | 简体中文

SCRFD C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of SCRFD on NPU.

Two steps before deployment:

  1. The environment of software and hardware should meet the requirements.
  2. Download the precompiled deployment repo or deploy the FastDeploy repository from scratch according to your development environment.

Refer to RK2 generation NPU deployment repository compilation for the steps above

Generate the base directory file

It consists of the following parts

.
├── CMakeLists.txt
├── build  # Compile folder
├── image  # The folder to save images 
├── infer.cc
├── model  # The folder to save model files
└── thirdpartys  # The folder to save sdk

Generate the directory first

mkdir build
mkdir images
mkdir model
mkdir thirdpartys

Compile

Compile and copy the SDK into the thirdpartys folder

Refer to RK2 generation NPU deployment repository compilation. It will enerate fastdeploy-0.7.0 directory in the build directory after compilation. Move it to the thirdpartys directory.

Copy the model files to the model folder

Refer to SCRFD model conversion to convert SCRFD ONNX model to RKNN model and move it to the model folder.

Prepare test images to the image folder

wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
cp test_lite_face_detector_3.jpg ./images

Compile example

cd build
cmake ..
make -j8
make install

Running routines

cd ./build/install
export LD_LIBRARY_PATH=${PWD}/lib:${LD_LIBRARY_PATH}
./rknpu_test

The visualized result after running is as follows