Files
FastDeploy/docs/cn/faq/boost_cv_by_flycv.md
yunyaoXYY 58d63f3e90 [Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend

* acc eval script

* acc eval

* remove acc_eval from branch huawei

* Add detection and segmentation examples for Ascend deployment

* Add detection and segmentation examples for Ascend deployment

* Add PPOCR example for ascend deploy

* Imporve paddle lite compiliation

* Add FlyCV doc

* Add FlyCV doc

* Add FlyCV doc

* Imporve Ascend docs

* Imporve Ascend docs
2023-01-04 10:01:23 +08:00

69 lines
2.2 KiB
Markdown

[English](../../en/faq/boost_cv_by_flycv.md) | 中文
# 使用FlyCV加速端到端推理性能
[FlyCV](https://github.com/PaddlePaddle/FlyCV) 是一款高性能计算机图像处理库, 针对ARM架构做了很多优化, 相比其他图像处理库性能更为出色.
FastDeploy现在已经集成FlyCV, 用户可以在支持的硬件平台上使用FlyCV, 实现模型端到端推理性能的加速.
## 已支持的系统与硬件架构
| 系统 | 硬件架构 |
| :-----------| :-------- |
| Android | armeabi-v7a, arm64-v8a |
| Linux | aarch64, armhf, x86_64|
## 使用方式
使用FlyCV,首先需要在编译时开启FlyCV编译选项,之后在部署时新增一行代码即可开启.
本文以Linux系统为例,说明如何开启FlyCV编译选项, 之后在部署时, 新增一行代码使用FlyCV.
用户可以按照如下方式,在编译预测库时,开启FlyCV编译选项.
```bash
# 编译C++预测库时, 开启FlyCV编译选项.
-DENABLE_VISION=ON \
# 在编译Python预测库时, 开启FlyCV编译选项
export ENABLE_FLYCV=ON
```
用户可以按照如下方式,在部署代码中新增一行代码启用FlyCV.
```bash
# C++部署代码.
# 新增一行代码启用FlyCV
fastdeploy::vision::EnableFlyCV();
# 其他部署代码...(以昇腾部署为例)
fastdeploy::RuntimeOption option;
option.UseAscend();
...
# Python部署代码
# 新增一行代码启用FlyCV
fastdeploy.vision.enable_flycv()
# 其他部署代码...(以昇腾部署为例)
runtime_option = build_option()
option.use_ascend()
...
```
## 部分平台FlyCV 端到端性能数据
鲲鹏920 CPU + Atlas 300I Pro 推理卡.
| 模型 | OpenCV 端到端性能(ms) | FlyCV 端到端性能(ms) |
| :-----------| :-------- | :-------- |
| ResNet50 | 2.78 | 1.63 |
| PP-LCNetV2 | 2.50 | 1.39 |
| YOLOv7 | 27.00 | 21.36 |
| PP_HumanSegV2_Lite | 2.76 | 2.10 |
瑞芯微RV1126.
| 模型 | OpenCV 端到端性能(ms) | FlyCV 端到端性能(ms) |
| :-----------| :-------- | :-------- |
| ResNet50 | 9.23 | 6.01 |
| mobilenetv1_ssld_量化模型 | 9.23 | 6.01 |
| yolov5s_量化模型 | 28.33 | 14.25 |
| PP_LiteSeg_量化模型 | 132.25 | 60.31 |