mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs
2.2 KiB
2.2 KiB
English | 中文
使用FlyCV加速端到端推理性能
FlyCV 是一款高性能计算机图像处理库, 针对ARM架构做了很多优化, 相比其他图像处理库性能更为出色. FastDeploy现在已经集成FlyCV, 用户可以在支持的硬件平台上使用FlyCV, 实现模型端到端推理性能的加速.
已支持的系统与硬件架构
系统 | 硬件架构 |
---|---|
Android | armeabi-v7a, arm64-v8a |
Linux | aarch64, armhf, x86_64 |
使用方式
使用FlyCV,首先需要在编译时开启FlyCV编译选项,之后在部署时新增一行代码即可开启. 本文以Linux系统为例,说明如何开启FlyCV编译选项, 之后在部署时, 新增一行代码使用FlyCV.
用户可以按照如下方式,在编译预测库时,开启FlyCV编译选项.
# 编译C++预测库时, 开启FlyCV编译选项.
-DENABLE_VISION=ON \
# 在编译Python预测库时, 开启FlyCV编译选项
export ENABLE_FLYCV=ON
用户可以按照如下方式,在部署代码中新增一行代码启用FlyCV.
# C++部署代码.
# 新增一行代码启用FlyCV
fastdeploy::vision::EnableFlyCV();
# 其他部署代码...(以昇腾部署为例)
fastdeploy::RuntimeOption option;
option.UseAscend();
...
# Python部署代码
# 新增一行代码启用FlyCV
fastdeploy.vision.enable_flycv()
# 其他部署代码...(以昇腾部署为例)
runtime_option = build_option()
option.use_ascend()
...
部分平台FlyCV 端到端性能数据
鲲鹏920 CPU + Atlas 300I Pro 推理卡.
模型 | OpenCV 端到端性能(ms) | FlyCV 端到端性能(ms) |
---|---|---|
ResNet50 | 2.78 | 1.63 |
PP-LCNetV2 | 2.50 | 1.39 |
YOLOv7 | 27.00 | 21.36 |
PP_HumanSegV2_Lite | 2.76 | 2.10 |
瑞芯微RV1126.
模型 | OpenCV 端到端性能(ms) | FlyCV 端到端性能(ms) |
---|---|---|
ResNet50 | 9.23 | 6.01 |
mobilenetv1_ssld_量化模型 | 9.23 | 6.01 |
yolov5s_量化模型 | 28.33 | 14.25 |
PP_LiteSeg_量化模型 | 132.25 | 60.31 |