Files
FastDeploy/examples/vision/facedet/yolov7face/cpp/README.md
CoolCola ce4867d14e [Model] Support YOLOv7-face Model (#651)
* 测试

* delete test

* add yolov7-face

* fit vision.h

* add yolov7-face test

* fit: yolov7-face infer.cc

* fit

* fit Yolov7-face Cmakelist

* fit yolov7Face.cc

* add yolov7-face pybind

* add yolov7-face python infer

* feat yolov7-face pybind

* feat yolov7-face format error

* feat yolov7face_pybind error

* feat add yolov7face-pybind to facedet-pybind

* same as before

* same sa before

* feat __init__.py

* add yolov7face.py

* feat yolov7face.h ignore ","

* feat .py

* fit yolov7face.py

* add yolov7face test teadme file

* add test file

* fit postprocess

* delete remain annotation

* fit preview

* fit yolov7facepreprocessor

* fomat code

* fomat code

* fomat code

* fit format error and confthreshold and nmsthres

* fit confthreshold and nmsthres

* fit test-yolov7-face

* fit test_yolov7face

* fit review

* fit ci error

Co-authored-by: kongbohua <kongbh2022@stu.pku.edu.cn>
Co-authored-by: CoolCola <49013063+kongbohua@users.noreply.github.com>
2022-12-14 19:14:43 +08:00

91 lines
3.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# YOLOv7Face C++部署示例
本目录下提供`infer.cc`快速完成YOLOv7Face在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.2
make -j
#下载官方转换好的YOLOv7Face模型文件和测试图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx
#使用yolov7-tiny-face.onnx模型
# CPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 2
#使用yolov7-lite-e.onnx模型
# CPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 2
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/49013063/206170111-843febb6-67d6-4c46-a121-d87d003bba21.jpg">
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## YOLOv7Face C++接口
### YOLOv7Face类
```c++
fastdeploy::vision::facedet::YOLOv7Face(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
YOLOv7Face模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> YOLOv7Face::Predict(cv::Mat* im, FaceDetectionResult* result,
> float conf_threshold = 0.3,
> float nms_iou_threshold = 0.5)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **conf_threshold**: 检测框置信度过滤阈值
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)