Files
FastDeploy/examples/vision/facedet/yolov7face/cpp/README.md
CoolCola ce4867d14e [Model] Support YOLOv7-face Model (#651)
* 测试

* delete test

* add yolov7-face

* fit vision.h

* add yolov7-face test

* fit: yolov7-face infer.cc

* fit

* fit Yolov7-face Cmakelist

* fit yolov7Face.cc

* add yolov7-face pybind

* add yolov7-face python infer

* feat yolov7-face pybind

* feat yolov7-face format error

* feat yolov7face_pybind error

* feat add yolov7face-pybind to facedet-pybind

* same as before

* same sa before

* feat __init__.py

* add yolov7face.py

* feat yolov7face.h ignore ","

* feat .py

* fit yolov7face.py

* add yolov7face test teadme file

* add test file

* fit postprocess

* delete remain annotation

* fit preview

* fit yolov7facepreprocessor

* fomat code

* fomat code

* fomat code

* fit format error and confthreshold and nmsthres

* fit confthreshold and nmsthres

* fit test-yolov7-face

* fit test_yolov7face

* fit review

* fit ci error

Co-authored-by: kongbohua <kongbh2022@stu.pku.edu.cn>
Co-authored-by: CoolCola <49013063+kongbohua@users.noreply.github.com>
2022-12-14 19:14:43 +08:00

3.6 KiB
Raw Blame History

YOLOv7Face C++部署示例

本目录下提供infer.cc快速完成YOLOv7Face在CPU/GPU以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试

mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.2
make -j

#下载官方转换好的YOLOv7Face模型文件和测试图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx

#使用yolov7-tiny-face.onnx模型
# CPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 2

#使用yolov7-lite-e.onnx模型
# CPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 2

运行完成可视化结果如下图所示

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

YOLOv7Face C++接口

YOLOv7Face类

fastdeploy::vision::facedet::YOLOv7Face(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

YOLOv7Face模型加载和初始化其中model_file为导出的ONNX模型格式。

参数

  • model_file(str): 模型文件路径
  • params_file(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
  • runtime_option(RuntimeOption): 后端推理配置默认为None即采用默认配置
  • model_format(ModelFormat): 模型格式默认为ONNX格式

Predict函数

YOLOv7Face::Predict(cv::Mat* im, FaceDetectionResult* result,
                float conf_threshold = 0.3,
                float nms_iou_threshold = 0.5)

模型预测接口,输入图像直接输出检测结果。

参数

  • im: 输入图像注意需为HWCBGR格式
  • result: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考视觉模型预测结果
  • conf_threshold: 检测框置信度过滤阈值
  • nms_iou_threshold: NMS处理过程中iou阈值