mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-01 12:22:53 +08:00
46 lines
1.4 KiB
Markdown
46 lines
1.4 KiB
Markdown
# YOLOv5部署示例
|
||
|
||
本文档说明如何进行[YOLOv5](https://github.com/ultralytics/yolov5)的快速部署推理。本目录结构如下
|
||
```
|
||
.
|
||
├── cpp # C++ 代码目录
|
||
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
|
||
│ ├── README.md # C++ 代码编译部署文档
|
||
│ └── yolov5.cc # C++ 示例代码
|
||
├── README.md # YOLOv5 部署文档
|
||
└── yolov5.py # Python示例代码
|
||
```
|
||
|
||
## 安装FastDeploy
|
||
|
||
使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu`
|
||
```
|
||
# 安装fastdeploy-python工具
|
||
pip install fastdeploy-python
|
||
|
||
# 安装vision-cpu模块
|
||
fastdeploy install vision-cpu
|
||
```
|
||
|
||
## Python部署
|
||
|
||
执行如下代码即会自动下载YOLOv5模型和测试图片
|
||
```
|
||
python yolov5.py
|
||
```
|
||
|
||
执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下
|
||
```
|
||
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||
223.395142,403.948669, 345.337189, 867.339050, 0.856906, 0
|
||
668.301758,400.781342, 808.441772, 882.534973, 0.829716, 0
|
||
50.210720,398.571411, 243.123367, 905.016602, 0.805375, 0
|
||
23.768242,214.979370, 802.627686, 778.840881, 0.756311, 5
|
||
0.737200,552.281006, 78.617218, 890.945007, 0.363471, 0
|
||
```
|
||
|
||
## 其它文档
|
||
|
||
- [C++部署](./cpp/README.md)
|
||
- [YOLOv5 API文档](./api.md)
|