mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 04:44:00 +08:00
YOLOv5部署示例
本文档说明如何进行YOLOv5的快速部署推理。本目录结构如下
.
├── cpp # C++ 代码目录
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
│ ├── README.md # C++ 代码编译部署文档
│ └── yolov5.cc # C++ 示例代码
├── README.md # YOLOv5 部署文档
└── yolov5.py # Python示例代码
安装FastDeploy
使用如下命令安装FastDeploy,注意到此处安装的是vision-cpu
,也可根据需求安装vision-gpu
# 安装fastdeploy-python工具
pip install fastdeploy-python
# 安装vision-cpu模块
fastdeploy install vision-cpu
Python部署
执行如下代码即会自动下载YOLOv5模型和测试图片
python yolov5.py
执行完成后会将可视化结果保存在本地vis_result.jpg
,同时输出检测结果如下
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
223.395142,403.948669, 345.337189, 867.339050, 0.856906, 0
668.301758,400.781342, 808.441772, 882.534973, 0.829716, 0
50.210720,398.571411, 243.123367, 905.016602, 0.805375, 0
23.768242,214.979370, 802.627686, 778.840881, 0.756311, 5
0.737200,552.281006, 78.617218, 890.945007, 0.363471, 0