mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-30 11:26:39 +08:00
89 lines
3.5 KiB
C++
89 lines
3.5 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All object detection model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace detection {
|
|
|
|
/*! @brief PPYOLOE model object used when to load a PPYOLOE model exported by PaddleDetection
|
|
*/
|
|
class FASTDEPLOY_DECL PPYOLOE : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel
|
|
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
|
*/
|
|
PPYOLOE(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/// Get model's name
|
|
virtual std::string ModelName() const { return "PaddleDetection/PPYOLOE"; }
|
|
|
|
/** \brief Predict the detection result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output detection result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(cv::Mat* im, DetectionResult* result);
|
|
|
|
protected:
|
|
PPYOLOE() {}
|
|
virtual bool Initialize();
|
|
/// Build the preprocess pipeline from the loaded model
|
|
virtual bool BuildPreprocessPipelineFromConfig();
|
|
/// Preprocess an input image, and set the preprocessed results to `outputs`
|
|
virtual bool Preprocess(Mat* mat, std::vector<FDTensor>* outputs);
|
|
|
|
/// Postprocess the inferenced results, and set the final result to `result`
|
|
virtual bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
DetectionResult* result);
|
|
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
std::string config_file_;
|
|
// configuration for nms
|
|
int64_t background_label = -1;
|
|
int64_t keep_top_k = 300;
|
|
float nms_eta = 1.0;
|
|
float nms_threshold = 0.7;
|
|
float score_threshold = 0.01;
|
|
int64_t nms_top_k = 10000;
|
|
bool normalized = true;
|
|
bool has_nms_ = true;
|
|
|
|
// This function will used to check if this model contains multiclass_nms
|
|
// and get parameters from the operator
|
|
void GetNmsInfo();
|
|
};
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|