Files
FastDeploy/fastdeploy/vision/detection/ppdet/ppyoloe.h
Jason 12e5a65fc3 Add some comments for ppyoloe (#324)
* Add some comments for ppyoloe

* Update runtime.h
2022-10-07 20:41:04 +08:00

89 lines
3.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
/** \brief All object detection model APIs are defined inside this namespace
*
*/
namespace detection {
/*! @brief PPYOLOE model object used when to load a PPYOLOE model exported by PaddleDetection
*/
class FASTDEPLOY_DECL PPYOLOE : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PPYOLOE(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
virtual std::string ModelName() const { return "PaddleDetection/PPYOLOE"; }
/** \brief Predict the detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result);
protected:
PPYOLOE() {}
virtual bool Initialize();
/// Build the preprocess pipeline from the loaded model
virtual bool BuildPreprocessPipelineFromConfig();
/// Preprocess an input image, and set the preprocessed results to `outputs`
virtual bool Preprocess(Mat* mat, std::vector<FDTensor>* outputs);
/// Postprocess the inferenced results, and set the final result to `result`
virtual bool Postprocess(std::vector<FDTensor>& infer_result,
DetectionResult* result);
std::vector<std::shared_ptr<Processor>> processors_;
std::string config_file_;
// configuration for nms
int64_t background_label = -1;
int64_t keep_top_k = 300;
float nms_eta = 1.0;
float nms_threshold = 0.7;
float score_threshold = 0.01;
int64_t nms_top_k = 10000;
bool normalized = true;
bool has_nms_ = true;
// This function will used to check if this model contains multiclass_nms
// and get parameters from the operator
void GetNmsInfo();
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy