mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
0692dcc4057413fe15da9c664d1faac263eae0b5

* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (#9) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * first commit for yolor * for merge * Develop (#11) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Yolor (#16) * Develop (#11) (#12) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Develop (#13) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (#14) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com> * add is_dynamic for YOLO series (#22) * modify ppmatting backend and docs * modify ppmatting docs * fix the PPMatting size problem * fix LimitShort's log * retrigger ci * modify PPMatting docs * modify the way for dealing with LimitShort * add pphumanmatting and modnet series * docs of PPMatting series * add explanation of newly added processors and fix processors * Modify LimitShort function and ppmatting.cc * modify ResizeByShort and ppmatting.cc * change resize_to_int_mult to limit_by_stride and delete resize_by_input_shape * retrigger ci * retrigger ci * fix problem produced by ResizeByShort * Update eigen.cmake * Delete eigen.cmake * refine code * add test file for ppmatting series * add squeeze for fd_tensor and modify ppmatting.cc Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com>
English | 简体中文
⚡️FastDeploy is an accessible and efficient deployment Development Toolkit. It covers 🔥critical AI models in the industry and provides 📦out-of-the-box deployment experience. It covers image classification, object detection, image segmentation, face detection, face recognition, human keypoint detection, OCR, semantic understanding and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform .
Potrait Segmentation | Image Matting | Semantic Segmentation | Real-Time Matting |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
OCR | Behavior Recognition | Object Detection | Pose Estimation |
![]() |
![]() |
![]() |
![]() |
Face Alignment | 3D Object Detection | Face Editing | Image Animation |
![]() |
![]() |
![]() |
![]() |
Updates
- 🔥 2022.8.18:Release FastDeploy release/v0.2.0
- New server-side deployment upgrade: faster inference performance, support more vision model
- Release high-performance inference engine SDK based on x86 CPUs and NVIDIA GPUs, with significant increase in inference speed
- Integrate Paddle Inference, ONNXRuntime, TensorRT and other inference engines and provide a seamless deployment experience
- Supports full range of object detection models such as YOLOv7, YOLOv6, YOLOv5, PP-YOLOE and provides End-To-End Deployment Demos
- Support over 40 key models and Demo Examples including face detection, face recognition, real-time portrait matting, image segmentation.
- Support deployment in both Python and C++
- Supports Rockchip, Amlogic, NXP and other NPU chip deployment capabilities on edge device deployment
- Release Lightweight Object Detection Picodet-NPU Deployment Demo, providing the full quantized inference capability for INT8.
- New server-side deployment upgrade: faster inference performance, support more vision model
Contents
- Data Center and Cloud Deployment
- Mobile and Edge Device Deployment
- Community
- Acknowledge
- License
Data Center and Cloud Deployment
A Quick Start for Python SDK
Installation
Prerequisites
- CUDA >= 11.2
- cuDNN >= 8.0
- python >= 3.6
- OS: Linux x86_64/macOS/Windows 10
Install Library with GPU Support
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
Conda Installation (Recommended)
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
Install CPU-only Library
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
Python Inference Example
- Prepare models and pictures
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
# For deployment of GPU/TensorRT, please refer to examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as vision
model = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
"ppyoloe_crn_l_300e_coco/model.pdiparams",
"ppyoloe_crn_l_300e_coco/infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)
vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
A Quick Start for C++ SDK
Installation
- Please refer to C++ Prebuilt Libraries Download
C++ Inference Example
- Prepare models and pictures
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
// For GPU/TensorRT deployment, please refer to examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"
int main(int argc, char* argv[]) {
namespace vision = fastdeploy::vision;
auto model = vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
"ppyoloe_crn_l_300e_coco/model.pdiparams",
"ppyoloe_crn_l_300e_coco/infer_cfg.yml");
auto im = cv::imread("000000014439.jpg");
vision::DetectionResult res;
model.Predict(&im, &res);
auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
cv::imwrite("vis_image.jpg", vis_im);
return 0;
}
For more deployment models, please refer to Vision Model Deployment Examples .
Supported Data Center and Cloud Model List🔥🔥🔥
Notes:
✅: already supported; ❔: to be supported in the future; ❌: not supported now;
Task | Model | API | Linux | Linux | Win | Win | Mac | Mac | Linux | Linux |
---|---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | X86 CPU | NVIDIA GPU | Intel CPU | NVIDIA GPU | Intel CPU | Arm CPU | AArch64 CPU | NVIDIA Jetson |
Classification | PaddleClas/ResNet50 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/PP-LCNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/PP-LCNetv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/EfficientNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/GhostNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/ShuffleNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/SqueeezeNetV1.1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/Inceptionv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/PP-HGNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/SwinTransformer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/PP-YOLOE | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/PicoDet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/YOLOv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/PP-YOLO | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Detection | PaddleDetection/PP-YOLOv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Detection | PaddleDetection/FasterRCNN | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Detection | Megvii-BaseDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | WongKinYiu/YOLOv7 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | meituan/YOLOv6 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | ultralytics/YOLOv5 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | WongKinYiu/YOLOR | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | WongKinYiu/ScaledYOLOv4 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | ppogg/YOLOv5Lite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | RangiLyu/NanoDetPlus | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/PP-LiteSeg | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/PP-HumanSegLite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/HRNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/PP-HumanSegServer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/Unet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/Deeplabv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceDetection | biubug6/RetinaFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceDetection | Linzaer/UltraFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceDetection | deepcam-cn/YOLOv5Face | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceDetection | deepinsight/SCRFD | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceRecognition | deepinsight/ArcFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceRecognition | deepinsight/CosFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceRecognition | deepinsight/PartialFC | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
FaceRecognition | deepinsight/VPL | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Matting | ZHKKKe/MODNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Edge-Side Deployment
EasyEdge Edge-Side Deployment
- ARM Linux System
EasyEdge Deployment on Mobile Devices
EasyEdge Customized Deployment
Paddle Lite NPU Deployment
Supported Edge-Side Model List
Model | Size (MB) | Linux | Android | iOS | Linux | Linux | Linux | TBD... | |
---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | ARM CPU | ARM CPU | ARM CPU | Rockchip-NPU RV1109 RV1126 RK1808 |
Amlogic-NPU A311D S905D C308X |
NXPNPU i.MX 8M Plus |
TBD...| |
Classification | PP-LCNet | 11.9 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | PP-LCNetv2 | 26.6 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | EfficientNet | 31.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | GhostNet | 20.8 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV1 | 17 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV2 | 14.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | MobileNetV3 | 22 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Classification | ShuffleNetV2 | 9.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | SqueezeNetV1.1 | 5 | ✅ | ✅ | ✅ | ||||
Classification | Inceptionv3 | 95.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | PP-HGNet | 59 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Classification | SwinTransformer_224_win7 | 352.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-PicoDet_s_320_coco | 4.1 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-PicoDet_s_320_lcnet | 4.9 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | CenterNet | 4.8 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | YOLOv3_MobileNetV3 | 94.6 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_tiny_650e_coco | 4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | SSD_MobileNetV1_300_120e_voc | 23.3 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_ResNet50vd | 188.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLOv2_ResNet50vd | 218.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | PP-YOLO_crn_l_300e_coco | 209.1 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Detection | YOLOv5s | 29.3 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Face Detection | BlazeFace | 1.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Face Detection | RetinaFace | 1.7 | ✅ | ❌ | ❌ | -- | -- | -- | -- |
Keypoint Detection | PP-TinyPose | 5.5 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Segmentation | PP-LiteSeg(STDC1) | 32.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | PP-HumanSeg-Lite | 0.556 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | HRNet-w18 | 38.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | PP-HumanSeg-Server | 107.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Segmentation | Unet | 53.7 | ❌ | ✅ | ❌ | -- | -- | -- | -- |
OCR | PP-OCRv1 | 2.3+4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
OCR | PP-OCRv2 | 2.3+4.4 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
OCR | PP-OCRv3 | 2.4+10.6 | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
OCR | PP-OCRv3-tiny | 2.4+10.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- |
Community
- If you have any question or suggestion, please give us your valuable input via GitHub Issues
- Join Us👬: Scan the QR code via WeChat to join our FastDeploy technology communication group
Acknowledge
We sincerely appreciate the open-sourced capabilities in EasyEdge as we adopt it for the SDK generation and download in this project.
License
FastDeploy is provided under the Apache-2.0.
Description
⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
androidgraphcoreinteljetsonkunlunobject-detectiononnxonnxruntimeopenvinopicodetrockchipservingstable-diffusiontensorrtuieyolov5yolov8
Readme
Apache-2.0
158 MiB
Languages
Python
45%
C++
28.9%
Cuda
25.3%
Shell
0.5%
C
0.2%
Other
0.1%