// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { /** \brief All object detection model APIs are defined inside this namespace * */ namespace detection { /*! @brief PPYOLOE model object used when to load a PPYOLOE model exported by PaddleDetection */ class FASTDEPLOY_DECL PPYOLOE : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is Paddle format */ PPYOLOE(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); /// Get model's name virtual std::string ModelName() const { return "PaddleDetection/PPYOLOE"; } /** \brief Predict the detection result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output detection result will be writen to this structure * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, DetectionResult* result); protected: PPYOLOE() {} virtual bool Initialize(); /// Build the preprocess pipeline from the loaded model virtual bool BuildPreprocessPipelineFromConfig(); /// Preprocess an input image, and set the preprocessed results to `outputs` virtual bool Preprocess(Mat* mat, std::vector* outputs); /// Postprocess the inferenced results, and set the final result to `result` virtual bool Postprocess(std::vector& infer_result, DetectionResult* result); std::vector> processors_; std::string config_file_; // configuration for nms int64_t background_label = -1; int64_t keep_top_k = 300; float nms_eta = 1.0; float nms_threshold = 0.7; float score_threshold = 0.01; int64_t nms_top_k = 10000; bool normalized = true; bool has_nms_ = true; // This function will used to check if this model contains multiclass_nms // and get parameters from the operator void GetNmsInfo(); }; } // namespace detection } // namespace vision } // namespace fastdeploy