mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
80 lines
2.7 KiB
C++
80 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace detection {
|
|
|
|
class FASTDEPLOY_DECL NanoDetPlus : public FastDeployModel {
|
|
public:
|
|
NanoDetPlus(const std::string& model_file,
|
|
const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
std::string ModelName() const { return "nanodet"; }
|
|
|
|
|
|
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
|
float conf_threshold = 0.35f,
|
|
float nms_iou_threshold = 0.5f);
|
|
|
|
// tuple of input size (width, height), e.g (320, 320)
|
|
std::vector<int> size;
|
|
// padding value, size should be same with Channels
|
|
std::vector<float> padding_value;
|
|
// keep aspect ratio or not when perform resize operation.
|
|
// This option is set as `false` by default in NanoDet-Plus.
|
|
bool keep_ratio;
|
|
// downsample strides for NanoDet-Plus to generate anchors, will
|
|
// take (8, 16, 32, 64) as default values.
|
|
std::vector<int> downsample_strides;
|
|
// for offseting the boxes by classes when using NMS, default 4096.
|
|
float max_wh;
|
|
// reg_max for GFL regression, default 7
|
|
int reg_max;
|
|
|
|
private:
|
|
bool Initialize();
|
|
|
|
bool Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold);
|
|
|
|
bool IsDynamicInput() const { return is_dynamic_input_; }
|
|
|
|
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
|
|
// or not.)
|
|
// RangiLyu/nanodet official 'export_onnx.py' script will export static ONNX
|
|
// by default.
|
|
// This value will auto check by fastdeploy after the internal Runtime
|
|
// initialized.
|
|
bool is_dynamic_input_;
|
|
};
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|