// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace detection { class FASTDEPLOY_DECL NanoDetPlus : public FastDeployModel { public: NanoDetPlus(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); std::string ModelName() const { return "nanodet"; } virtual bool Predict(cv::Mat* im, DetectionResult* result, float conf_threshold = 0.35f, float nms_iou_threshold = 0.5f); // tuple of input size (width, height), e.g (320, 320) std::vector size; // padding value, size should be same with Channels std::vector padding_value; // keep aspect ratio or not when perform resize operation. // This option is set as `false` by default in NanoDet-Plus. bool keep_ratio; // downsample strides for NanoDet-Plus to generate anchors, will // take (8, 16, 32, 64) as default values. std::vector downsample_strides; // for offseting the boxes by classes when using NMS, default 4096. float max_wh; // reg_max for GFL regression, default 7 int reg_max; private: bool Initialize(); bool Preprocess(Mat* mat, FDTensor* output, std::map>* im_info); bool Postprocess(FDTensor& infer_result, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold); bool IsDynamicInput() const { return is_dynamic_input_; } // whether to inference with dynamic shape (e.g ONNX export with dynamic shape // or not.) // RangiLyu/nanodet official 'export_onnx.py' script will export static ONNX // by default. // This value will auto check by fastdeploy after the internal Runtime // initialized. bool is_dynamic_input_; }; } // namespace detection } // namespace vision } // namespace fastdeploy