mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* Update ppseg backend support type * Update ppseg preprocess if condition * Update README.md * Update README.md * Update README.md * Update ppseg with eigen functions * Delete old argmax function * Update README.md * Delete apply_softmax in ppseg example demo * Update ppseg code with createFromTensor function * Delete FDTensor2CVMat function * Update README.md * Update README.md * Update README.md * Update README.md * Update ppseg model.cc with transpose&&softmax in place convert * Update segmentation_result.md * Update model.cc * Update README.md * Update README.md Co-authored-by: Jason <jiangjiajun@baidu.com>
80 lines
3.4 KiB
Markdown
80 lines
3.4 KiB
Markdown
# PaddleSeg Python部署示例
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
|
||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
|
||
|
||
本目录下提供`infer.py`快速完成Unet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||
|
||
```bash
|
||
#下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/segmentation/paddleseg/python
|
||
|
||
# 下载Unet模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
|
||
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
|
||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||
|
||
# CPU推理
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
|
||
# GPU推理
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
|
||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
|
||
```
|
||
|
||
运行完成可视化结果如下图所示
|
||
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||
</div>
|
||
|
||
## PaddleSegModel Python接口
|
||
|
||
```python
|
||
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||
```
|
||
|
||
PaddleSeg模型加载和初始化,其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/model_export_cn.md)
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径
|
||
> * **config_file**(str): 推理部署配置文件
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||
|
||
### predict函数
|
||
|
||
> ```python
|
||
> PaddleSegModel.predict(input_image)
|
||
> ```
|
||
>
|
||
> 模型预测结口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||
|
||
> **返回**
|
||
>
|
||
> > 返回`fastdeploy.vision.SegmentationResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
### 类成员属性
|
||
#### 预处理参数
|
||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||
|
||
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏,即height大于width的图片
|
||
|
||
#### 后处理参数
|
||
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`,将预测的输出分割标签(label_map)对应的概率结果(score_map)做softmax归一化处理
|
||
|
||
## 其它文档
|
||
|
||
- [PaddleSeg 模型介绍](..)
|
||
- [PaddleSeg C++部署](../cpp)
|
||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
|