Files
FastDeploy/examples/vision/detection/paddledetection/python/README.md

78 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# PaddleDetection Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/quick_start)
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/paddledetection/python/
#下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU推理
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
# GPU推理
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
## PaddleDetection Python接口
```python
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleDetection模型加载和初始化其中model_file params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理配置yaml文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle
### predict函数
PaddleDetection中各个模型包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN均提供如下同样的成员函数用于进行图像的检测
> ```python
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [PaddleDetection 模型介绍](..)
- [PaddleDetection C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)