mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
82 lines
3.5 KiB
Markdown
82 lines
3.5 KiB
Markdown
# NanoDetPlus Python部署示例
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
|
||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
|
||
|
||
本目录下提供`infer.py`快速完成NanoDetPlus在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||
|
||
```bash
|
||
#下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd examples/vision/detection/nanodet_plus/python/
|
||
|
||
#下载NanoDetPlus模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/nanodet-plus-m_320.onnx
|
||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||
|
||
# CPU推理
|
||
python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device cpu
|
||
# GPU推理
|
||
python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device gpu
|
||
# GPU上使用TensorRT推理
|
||
python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device gpu --use_trt True
|
||
```
|
||
|
||
运行完成可视化结果如下图所示
|
||
|
||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301689-87ee5205-2eff-4204-b615-24c400f01323.jpg">
|
||
|
||
## NanoDetPlus Python接口
|
||
|
||
```python
|
||
fastdeploy.vision.detection.NanoDetPlus(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
```
|
||
|
||
NanoDetPlus模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
|
||
|
||
### predict函数
|
||
|
||
> ```python
|
||
> NanoDetPlus.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||
> ```
|
||
>
|
||
> 模型预测结口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||
|
||
> **返回**
|
||
>
|
||
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
### 类成员属性
|
||
#### 预处理参数
|
||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||
|
||
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[320, 320]
|
||
> > * **padding_value**(list[float]): 通过此参数可以修改图片在resize时候做填充(padding)的值, 包含三个浮点型元素, 分别表示三个通道的值, 默认值为[0, 0, 0]
|
||
> > * **keep_ratio**(bool): 通过此参数指定resize时是否保持宽高比例不变,默认是fasle.
|
||
> > * **reg_max**(int): GFL回归中的reg_max参数,默认是7.
|
||
> > * **downsample_strides**(list[int]): 通过此参数可以修改生成anchor的特征图的下采样倍数, 包含三个整型元素, 分别表示默认的生成anchor的下采样倍数, 默认值为[8, 16, 32, 64]
|
||
|
||
|
||
|
||
## 其它文档
|
||
|
||
- [NanoDetPlus 模型介绍](..)
|
||
- [NanoDetPlus C++部署](../cpp)
|
||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)
|