mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md
1.8 KiB
1.8 KiB
English | 中文
Export Model
Introduction
Fastdeploy has simply integrated the onnx->rknn conversion process. In this instruction, we first write yaml configuration files, then export models in tools/export.py
.
Before you start the conversion, please check if the environment is installed successfully referring to RKNN-Toolkit2 Installation.
Configuration Parameter in export.py
Parameter | Whether it can be NULL | Parameter Role |
---|---|---|
verbose | Y(DEFAULT=TRUE) | Decide whether to output specific information when converting |
config_path | N | Path to configuration file |
Config File Introduction
Module of config yaml file
model_path: ./portrait_pp_humansegv2_lite_256x144_pretrained.onnx
output_folder: ./
target_platform: RK3588
normalize:
mean: [[0.5,0.5,0.5]]
std: [[0.5,0.5,0.5]]
outputs: None
Config parameters
- model_path: Model saving path.
- output_folder: Model saving folder name.
- target_platform: The device model runs on, only RK3588 or RK3568 can be chosen.
- normalize: Configure the normalize operation on NPU with two parameters std and mean.
- std: If you do the normalize operation externally, please configure to [1/255,1/255,1/255].
- mean: If you do the normalize operation externally, please configure to [0,0,0].
- outputs: Output node list, if you use default output node, please configure to None.
How to convert model
Run the line in the root directory:
python tools/export.py --config_path=./config.yaml
Things to note in Model Export
- Please don't export models with softmax or argmax, calculate them externally instead.