English | [中文](../../../cn/faq/rknpu2/export.md) # Export Model ## Introduction Fastdeploy has simply integrated the onnx->rknn conversion process. In this instruction, we first write yaml configuration files, then export models in `tools/export.py`. Before you start the conversion, please check if the environment is installed successfully referring to [RKNN-Toolkit2 Installation](./install_rknn_toolkit2.md). ## Configuration Parameter in export.py | Parameter | Whether it can be NULL | Parameter Role | |-----------------|------------|--------------------| | verbose | Y(DEFAULT=TRUE) | Decide whether to output specific information when converting | | config_path | N | Path to configuration file | ## Config File Introduction ### Module of config yaml file ```yaml model_path: ./portrait_pp_humansegv2_lite_256x144_pretrained.onnx output_folder: ./ target_platform: RK3588 normalize: mean: [[0.5,0.5,0.5]] std: [[0.5,0.5,0.5]] outputs: None ``` ### Config parameters * model_path: Model saving path. * output_folder: Model saving folder name. * target_platform: The device model runs on, only RK3588 or RK3568 can be chosen. * normalize: Configure the normalize operation on NPU with two parameters std and mean. * std: If you do the normalize operation externally, please configure to [1/255,1/255,1/255]. * mean: If you do the normalize operation externally, please configure to [0,0,0]. * outputs: Output node list, if you use default output node, please configure to None. ## How to convert model Run the line in the root directory: ```bash python tools/export.py --config_path=./config.yaml ``` ## Things to note in Model Export * Please don't export models with softmax or argmax, calculate them externally instead.