feat: add draft_logprobs for Speculative Decode MTP

This commit is contained in:
sunlei1024
2025-09-26 13:07:48 +08:00
committed by Deleter-D
parent aed79aec4f
commit d5a3c5c933
6 changed files with 293 additions and 24 deletions

View File

@@ -287,6 +287,7 @@ class CompletionOutput:
token_ids: list[int]
logprob: Optional[float] = None
top_logprobs: Optional[LogprobsLists] = None
draft_top_logprobs: Optional[LogprobsLists] = None
logprobs: Optional[SampleLogprobs] = None
draft_token_ids: list[int] = None
text: Optional[str] = None
@@ -412,6 +413,7 @@ class RequestOutput:
request_id: str,
prompt: Optional[str] = None,
prompt_token_ids: Optional[list[int]] = None,
output_type: Optional[int] = 3,
outputs: CompletionOutput = None,
finished: bool = False,
metrics: Optional[RequestMetrics] = None,
@@ -456,6 +458,7 @@ class RequestOutput:
f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"output_type={self.output_type}, "
f"outputs={self.outputs}, "
f"finished={self.finished}, "
f"num_cached_tokens={self.num_cached_tokens}, "
@@ -476,6 +479,7 @@ class RequestOutput:
"request_id": self.request_id,
"prompt": self.prompt,
"prompt_token_ids": self.prompt_token_ids,
"output_type": self.output_type,
"outputs": None if self.outputs is None else self.outputs.to_dict(),
"metrics": None if self.metrics is None else self.metrics.to_dict(),
"finished": self.finished,

View File

@@ -405,6 +405,7 @@ class CompletionRequest(BaseModel):
echo: Optional[bool] = False
frequency_penalty: Optional[float] = None
logprobs: Optional[int] = None
include_draft_logprobs: Optional[bool] = False
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
@@ -540,6 +541,7 @@ class ChatCompletionRequest(BaseModel):
frequency_penalty: Optional[float] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
include_draft_logprobs: Optional[bool] = False
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False

View File

@@ -295,10 +295,15 @@ class OpenAIServingChat:
output_top_logprobs = output["top_logprobs"]
previous_num_tokens += len(output["token_ids"])
logprobs_res: Optional[LogProbs] = None
draft_logprobs_res: Optional[LogProbs] = None
if request.logprobs and output_top_logprobs is not None:
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
if request.include_draft_logprobs:
draft_logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.draft_top_logprobs
)
delta_message = DeltaMessage(
reasoning_content="",
@@ -326,6 +331,7 @@ class OpenAIServingChat:
index=0,
delta=delta_message,
logprobs=logprobs_res,
draft_logprobs=draft_logprobs_res,
arrival_time=arrival_time,
)
if res["finished"]:
@@ -461,11 +467,21 @@ class OpenAIServingChat:
output = data["outputs"]
output_top_logprobs = output["top_logprobs"]
if output_top_logprobs is not None:
# logprobs
logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.top_logprobs
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
# draf_logprobs
if request.include_draft_logprobs:
draft_logprobs_res = self._create_chat_logprobs(
output_top_logprobs, request.logprobs, request.draft_top_logprobs
)
if draft_logprobs_res and draft_logprobs_res.content is not None:
draft_logprobs_res.extend(logprobs_res.content)
if data["finished"]:
final_res = data
task_is_finished = True

View File

@@ -212,6 +212,7 @@ class OpenAIServingCompletion:
valid_results = [dict()] * num_choices
output_tokens = [0] * num_choices
aggregated_top_logprobs = [[[], [], []] for _ in range(num_choices)]
aggregated_draft_top_logprobs = [[[], [], []] for _ in range(num_choices)]
aggregated_token_ids = [[] for _ in range(num_choices)]
completion_batched_token_ids = [[] for _ in range(num_choices)]
current_waiting_time = 0
@@ -239,11 +240,18 @@ class OpenAIServingCompletion:
output = data["outputs"]
output_top_logprobs = output["top_logprobs"]
output_draft_top_logprobs = output["draft_top_logprobs"]
if output_top_logprobs is not None:
aggregated_top_logprobs[rid][0].extend(output_top_logprobs[0])
aggregated_top_logprobs[rid][1].extend(output_top_logprobs[1])
aggregated_top_logprobs[rid][2].extend(output_top_logprobs[2])
# draft logprobs
if request.include_draft_logprobs:
aggregated_draft_top_logprobs[rid][0].extend(output_draft_top_logprobs[0])
aggregated_draft_top_logprobs[rid][1].extend(output_draft_top_logprobs[1])
aggregated_draft_top_logprobs[rid][2].extend(output_draft_top_logprobs[2])
aggregated_token_ids[rid].extend(data["outputs"]["token_ids"])
self.engine_client.data_processor.process_response_dict(
@@ -390,10 +398,17 @@ class OpenAIServingCompletion:
await self._echo_back_prompt(request, res, idx)
output = res["outputs"]
output_top_logprobs = output["top_logprobs"]
output_draft_top_logprobs = output["draft_top_logprobs"]
logprobs_res: Optional[CompletionLogprobs] = None
draft_logprobs_res: Optional[CompletionLogprobs] = None
if request.logprobs and output_top_logprobs is not None:
logprobs_res = self._create_completion_logprobs(output_top_logprobs, request.logprobs, 0)
# draft logprobs
if request.include_draft_logprobs:
draft_logprobs_res = self._create_completion_logprobs(
output_draft_top_logprobs, request.logprobs, 0
)
output_tokens[idx] += 1
delta_message = CompletionResponseStreamChoice(
index=idx,
@@ -406,6 +421,7 @@ class OpenAIServingCompletion:
reasoning_content="",
arrival_time=arrival_time,
logprobs=logprobs_res,
draft_logprobs=draft_logprobs_res,
)
if not res["finished"] and "delta_message" in output:
delta_message_output = output["delta_message"]

View File

@@ -109,6 +109,7 @@ class TokenProcessor:
self.executor = ThreadPoolExecutor(max_workers=1)
self.prefill_result_status = dict()
self._finalizer = weakref.finalize(self, self._cleanup_resources)
self._batch_result_buffer = None
def _cleanup_resources(self):
"""Cleaning up shared memory resources"""
@@ -165,7 +166,20 @@ class TokenProcessor:
try:
is_blocking = True
if self.speculative_decoding:
speculate_get_output(self.output_tokens, rank_id, is_blocking, False)
if (
self.cfg.parallel_config.enable_expert_parallel
and self.cfg.parallel_config.data_parallel_size > 1
):
if self.use_logprobs:
# TODO speculate_get_output_with_topk
pass
else:
speculate_get_output(self.output_tokens, rank_id, is_blocking, True)
elif self.use_logprobs:
# TODO speculate_get_output_with_topk
pass
else:
speculate_get_output(self.output_tokens, rank_id, is_blocking, False)
if self.output_tokens[0] == -2:
continue
@@ -213,7 +227,7 @@ class TokenProcessor:
self.executor.submit(process_metrics)
def postprocess(self, batch_result):
def postprocess(self, batch_result, mtype=3):
"""
single post-processing function
@@ -221,7 +235,21 @@ class TokenProcessor:
batch_result (list): batch results
"""
try:
self.cached_generated_tokens.put_results(batch_result)
if self.cfg.speculative_config.method and self.cfg.use_logprobs:
if mtype == 3: # target
self._batch_result_buffer = batch_result
elif mtype == 4: # draft
target_batch_result = []
draft_batch_result = batch_result
for target, decode in zip(self._batch_result_buffer, draft_batch_result):
target["outputs"]["draft_top_logprobs"] = decode["outputs"]["draft_top_logprobs"]
target_batch_result.append(target)
self._batch_result_buffer = None
self.cached_generated_tokens.put_results(target_batch_result)
else:
self.cached_generated_tokens.put_results(batch_result)
else:
self.cached_generated_tokens.put_results(batch_result)
except Exception as e:
llm_logger.error(f"Error in TokenProcessor's postprocess: {e}, {str(traceback.format_exc())}")
@@ -302,9 +330,19 @@ class TokenProcessor:
tokens = self.output_tokens.numpy()
scores = None
ranks = None
# target:3, draft:4
mtype = 3
if self.cfg.speculative_config.method:
batch = self.output_tokens[1]
accept_num = tokens[2 : batch + 2]
if self.use_logprobs:
mtype = self.output_tokens[1, 0]
batch = self.output_tokens[2, 0]
accept_num = [int(num[0]) for num in self.output_tokens[3 : batch + 3]]
tokens = tokens[3 + batch : 3 + batch + batch * (K + 1) * MAX_DRAFT_TOKENS].reshape(
[batch, K + 1, MAX_DRAFT_TOKENS]
)
else:
batch = self.output_tokens[1]
accept_num = tokens[2 : batch + 2]
self._record_speculative_decoding_mertics(accept_num)
elif self.use_logprobs:
batch = self.output_tokens[1, 0]
@@ -332,19 +370,24 @@ class TokenProcessor:
task_id = task.request_id
if self.cfg.speculative_config.method:
token_ids = tokens[
2
+ SPECULATE_MAX_BSZ
+ i * MAX_DRAFT_TOKENS : 2
+ SPECULATE_MAX_BSZ
+ i * MAX_DRAFT_TOKENS
+ accept_num[i]
].tolist()
if len(token_ids) == 0 or token_ids[-1] <= 0:
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
if task_id in self.resource_manager.to_be_rescheduled_request_id_set:
self.resource_manager.reschedule_preempt_task(task_id)
continue
if accept_num[i] == -3:
recovery_stop = True
if recovery_stop:
llm_logger.info(f"recovery stop signal found at task {task_id}")
token_ids = [RECOVERY_STOP_SIGNAL]
elif self.use_logprobs:
token_ids = tokens[i][:, 0].tolist()[: accept_num[i]]
else:
token_ids = tokens[
2
+ SPECULATE_MAX_BSZ
+ i * MAX_DRAFT_TOKENS : 2
+ SPECULATE_MAX_BSZ
+ i * MAX_DRAFT_TOKENS
+ accept_num[i]
].tolist()
if (not recovery_stop) and (len(token_ids) == 0 or token_ids[-1] <= 0):
continue
else:
token_id = int(tokens[i, 0])
token_ids = [token_id]
@@ -387,6 +430,7 @@ class TokenProcessor:
self._record_metrics(task, current_time, token_ids)
result = RequestOutput(
request_id=task_id,
output_type=mtype,
outputs=CompletionOutput(
index=i,
send_idx=self.tokens_counter[task_id],
@@ -412,16 +456,36 @@ class TokenProcessor:
result.outputs.token_ids.append(token_id)
task.output_token_ids.append(token_id)
if self.use_logprobs:
# TODO 投机解码场景兼容支持
result.outputs.logprob = float(scores[i, 0])
# Construct top_logprobs
topk_token_ids = tokens[i, :].tolist()
topk_logprobs = scores[i, :].tolist()
sampled_rank = ranks[i].item()
result.outputs.top_logprobs = LogprobsLists(
logprob_token_ids=[topk_token_ids],
logprobs=[topk_logprobs],
sampled_token_ranks=[sampled_rank],
)
if mtype == 3: # top_logprobs
if result.outputs.top_logprobs is None:
result.outputs.top_logprobs = LogprobsLists(
logprob_token_ids=[topk_token_ids],
logprobs=[topk_logprobs],
sampled_token_ranks=[sampled_rank],
)
else:
result.outputs.top_logprobs.logprob_token_ids.extend([topk_token_ids])
result.outputs.top_logprobs.logprobs.extend([topk_logprobs])
result.outputs.top_logprobs.sampled_token_ranks.extend([sampled_rank])
elif mtype == 4: # draft_top_logprobs
if result.outputs.draft_top_logprobs is None:
result.outputs.draft_top_logprobs = LogprobsLists(
logprob_token_ids=[topk_token_ids],
logprobs=[topk_logprobs],
sampled_token_ranks=[sampled_rank],
)
else:
result.outputs.draft_top_logprobs.logprob_token_ids.extend([topk_token_ids])
result.outputs.draft_top_logprobs.logprobs.extend([topk_logprobs])
result.outputs.draft_top_logprobs.sampled_token_ranks.extend([sampled_rank])
if token_id in task.eos_token_ids or is_prefill or recovery_stop:
result.finished = True
if recovery_stop:
@@ -442,7 +506,7 @@ class TokenProcessor:
if not is_prefill or self.cfg.scheduler_config.name == "splitwise":
batch_result.append(result)
self.postprocess(batch_result)
self.postprocess(batch_result, mtype)
def _record_metrics(self, task, current_time, token_ids):
"""Record all metrics for a task"""

View File

@@ -0,0 +1,167 @@
import time
import unittest
from unittest.mock import Mock
import paddle
from fastdeploy.output.token_processor import TokenProcessor
paddle.set_device("cpu")
# Mock classes and constants needed for the test
class MockConfig:
class ParallelConfig:
local_data_parallel_id = 0
class SpeculativeConfig:
method = None
class ModelConfig:
enable_logprob = False
class SchedulerConfig:
name = "default"
parallel_config = ParallelConfig()
speculative_config = SpeculativeConfig()
model_config = ModelConfig()
scheduler_config = SchedulerConfig()
class MockTask:
def __init__(self):
self.request_id = "test_request_1"
self.arrival_time = time.time()
self.inference_start_time = time.time()
self.schedule_start_time = time.time()
self.preprocess_end_time = time.time() - 0.1
self.preprocess_start_time = time.time() - 0.2
self.eos_token_ids = [2]
self.output_token_ids = []
self.messages = "Test prompt"
self.num_cached_tokens = 0
self.disaggregate_info = None
self.prefill_chunk_info = None
self.prefill_chunk_num = 0
class MockResourceManager:
def __init__(self):
self.stop_flags = [False]
self.tasks_list = [MockTask()]
self.to_be_rescheduled_request_id_set = set()
def info(self):
return "Mock resource manager info"
def reschedule_preempt_task(self, task_id):
pass
# Constants
RECOVERY_STOP_SIGNAL = -3
MAX_BSZ = 512
K = 20
MAX_DRAFT_TOKENS = 6
SPECULATE_MAX_BSZ = 256
class TestTokenProcessorProcessBatchOutput(unittest.TestCase):
def setup_token_processor(self, speculative_decoding=False, use_logprobs=False):
"""Helper method to setup TokenProcessor with different configurations"""
cfg = MockConfig()
cfg.speculative_config.method = "mtp" if speculative_decoding else None
cfg.model_config.enable_logprob = use_logprobs
processor = TokenProcessor.__new__(TokenProcessor)
processor.cfg = cfg
processor.cached_generated_tokens = []
processor.engine_worker_queue = Mock()
processor.split_connector = Mock()
processor.resource_manager = MockResourceManager()
processor.tokens_counter = {}
processor.total_step = 0
processor.number_of_output_tokens = 0
processor.prefill_result_status = {}
processor.executor = Mock()
if speculative_decoding:
if use_logprobs:
processor.output_tokens = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1) + MAX_BSZ + 3, 1],
fill_value=2,
dtype="int64",
)
processor.output_scores = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1), 1],
fill_value=0.0,
dtype="float32",
)
processor.output_ranks = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS],
fill_value=0,
dtype="int64",
)
else:
processor.output_tokens = paddle.full(
shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2],
fill_value=2,
dtype="int64",
)
elif use_logprobs:
processor.output_tokens = paddle.full(shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64")
processor.output_scores = paddle.full(shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32")
processor.output_ranks = paddle.full(shape=[MAX_BSZ], fill_value=0, dtype="int64")
else:
processor.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1], fill_value=2, dtype="int64")
return processor
def test_speculative_decoding_use_logprobs(self):
"""Test basic speculative decoding scenario"""
processor = self.setup_token_processor(speculative_decoding=True, use_logprobs=True)
print(f"{processor}")
# batch_size = 1
# max_draft_tokens = MAX_DRAFT_TOKENS
# # Setup speculative decoding output format
# output_tokens_np = np.full(
# SPECULATE_MAX_BSZ * max_draft_tokens + SPECULATE_MAX_BSZ + 10,
# 2,
# dtype=np.int64,
# )
# output_tokens_np[1] = batch_size # batch size
# output_tokens_np[2:2 + batch_size] = [3] # accept numbers (3 accepted tokens)
# # Setup draft tokens
# start_idx = 2 + SPECULATE_MAX_BSZ
# for i in range(batch_size):
# draft_tokens = np.arange(100, 100 + max_draft_tokens)
# output_tokens_np[
# start_idx + i * max_draft_tokens:start_idx + (i + 1) * max_draft_tokens
# ] = draft_tokens
# processor.output_tokens = paddle.to_tensor(output_tokens_np)
# processor.tokens_counter = {"test_request_1": 0}
# processor.postprocess = Mock()
# # Mock speculative decoding metrics recording
# processor._record_speculative_decoding_mertics = Mock()
# processor._compute_speculative_status = Mock()
# with patch.object(processor.resource_manager, "stop_flags", [False]):
# with patch.object(processor.resource_manager.tasks_list[0], "eos_token_ids", [2]):
# processor._process_batch_output()
# self.assertTrue(processor._record_speculative_decoding_mertics.called)
# results = processor.postprocess.call_args[0][0]
# self.assertEqual(len(results), 1)
# # Should have 3 tokens (based on accept_num)
# self.assertEqual(len(results[0].outputs.token_ids), 3)
if __name__ == "__main__":
unittest.main(verbosity=2, buffer=False)