mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-27 18:41:02 +08:00
168 lines
5.8 KiB
Python
168 lines
5.8 KiB
Python
import time
|
|
import unittest
|
|
from unittest.mock import Mock
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.output.token_processor import TokenProcessor
|
|
|
|
paddle.set_device("cpu")
|
|
|
|
|
|
# Mock classes and constants needed for the test
|
|
class MockConfig:
|
|
class ParallelConfig:
|
|
local_data_parallel_id = 0
|
|
|
|
class SpeculativeConfig:
|
|
method = None
|
|
|
|
class ModelConfig:
|
|
enable_logprob = False
|
|
|
|
class SchedulerConfig:
|
|
name = "default"
|
|
|
|
parallel_config = ParallelConfig()
|
|
speculative_config = SpeculativeConfig()
|
|
model_config = ModelConfig()
|
|
scheduler_config = SchedulerConfig()
|
|
|
|
|
|
class MockTask:
|
|
def __init__(self):
|
|
self.request_id = "test_request_1"
|
|
self.arrival_time = time.time()
|
|
self.inference_start_time = time.time()
|
|
self.schedule_start_time = time.time()
|
|
self.preprocess_end_time = time.time() - 0.1
|
|
self.preprocess_start_time = time.time() - 0.2
|
|
self.eos_token_ids = [2]
|
|
self.output_token_ids = []
|
|
self.messages = "Test prompt"
|
|
self.num_cached_tokens = 0
|
|
self.disaggregate_info = None
|
|
self.prefill_chunk_info = None
|
|
self.prefill_chunk_num = 0
|
|
|
|
|
|
class MockResourceManager:
|
|
def __init__(self):
|
|
self.stop_flags = [False]
|
|
self.tasks_list = [MockTask()]
|
|
self.to_be_rescheduled_request_id_set = set()
|
|
|
|
def info(self):
|
|
return "Mock resource manager info"
|
|
|
|
def reschedule_preempt_task(self, task_id):
|
|
pass
|
|
|
|
|
|
# Constants
|
|
RECOVERY_STOP_SIGNAL = -3
|
|
MAX_BSZ = 512
|
|
K = 20
|
|
MAX_DRAFT_TOKENS = 6
|
|
SPECULATE_MAX_BSZ = 256
|
|
|
|
|
|
class TestTokenProcessorProcessBatchOutput(unittest.TestCase):
|
|
|
|
def setup_token_processor(self, speculative_decoding=False, use_logprobs=False):
|
|
"""Helper method to setup TokenProcessor with different configurations"""
|
|
cfg = MockConfig()
|
|
cfg.speculative_config.method = "mtp" if speculative_decoding else None
|
|
cfg.model_config.enable_logprob = use_logprobs
|
|
|
|
processor = TokenProcessor.__new__(TokenProcessor)
|
|
processor.cfg = cfg
|
|
processor.cached_generated_tokens = []
|
|
processor.engine_worker_queue = Mock()
|
|
processor.split_connector = Mock()
|
|
processor.resource_manager = MockResourceManager()
|
|
processor.tokens_counter = {}
|
|
processor.total_step = 0
|
|
processor.number_of_output_tokens = 0
|
|
processor.prefill_result_status = {}
|
|
processor.executor = Mock()
|
|
|
|
if speculative_decoding:
|
|
if use_logprobs:
|
|
processor.output_tokens = paddle.full(
|
|
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1) + MAX_BSZ + 3, 1],
|
|
fill_value=2,
|
|
dtype="int64",
|
|
)
|
|
processor.output_scores = paddle.full(
|
|
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1), 1],
|
|
fill_value=0.0,
|
|
dtype="float32",
|
|
)
|
|
processor.output_ranks = paddle.full(
|
|
shape=[MAX_BSZ * MAX_DRAFT_TOKENS],
|
|
fill_value=0,
|
|
dtype="int64",
|
|
)
|
|
else:
|
|
processor.output_tokens = paddle.full(
|
|
shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2],
|
|
fill_value=2,
|
|
dtype="int64",
|
|
)
|
|
elif use_logprobs:
|
|
processor.output_tokens = paddle.full(shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64")
|
|
processor.output_scores = paddle.full(shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32")
|
|
processor.output_ranks = paddle.full(shape=[MAX_BSZ], fill_value=0, dtype="int64")
|
|
else:
|
|
processor.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1], fill_value=2, dtype="int64")
|
|
|
|
return processor
|
|
|
|
def test_speculative_decoding_use_logprobs(self):
|
|
"""Test basic speculative decoding scenario"""
|
|
processor = self.setup_token_processor(speculative_decoding=True, use_logprobs=True)
|
|
print(f"{processor}")
|
|
|
|
# batch_size = 1
|
|
# max_draft_tokens = MAX_DRAFT_TOKENS
|
|
|
|
# # Setup speculative decoding output format
|
|
# output_tokens_np = np.full(
|
|
# SPECULATE_MAX_BSZ * max_draft_tokens + SPECULATE_MAX_BSZ + 10,
|
|
# 2,
|
|
# dtype=np.int64,
|
|
# )
|
|
# output_tokens_np[1] = batch_size # batch size
|
|
# output_tokens_np[2:2 + batch_size] = [3] # accept numbers (3 accepted tokens)
|
|
|
|
# # Setup draft tokens
|
|
# start_idx = 2 + SPECULATE_MAX_BSZ
|
|
# for i in range(batch_size):
|
|
# draft_tokens = np.arange(100, 100 + max_draft_tokens)
|
|
# output_tokens_np[
|
|
# start_idx + i * max_draft_tokens:start_idx + (i + 1) * max_draft_tokens
|
|
# ] = draft_tokens
|
|
|
|
# processor.output_tokens = paddle.to_tensor(output_tokens_np)
|
|
# processor.tokens_counter = {"test_request_1": 0}
|
|
# processor.postprocess = Mock()
|
|
|
|
# # Mock speculative decoding metrics recording
|
|
# processor._record_speculative_decoding_mertics = Mock()
|
|
# processor._compute_speculative_status = Mock()
|
|
|
|
# with patch.object(processor.resource_manager, "stop_flags", [False]):
|
|
# with patch.object(processor.resource_manager.tasks_list[0], "eos_token_ids", [2]):
|
|
# processor._process_batch_output()
|
|
|
|
# self.assertTrue(processor._record_speculative_decoding_mertics.called)
|
|
# results = processor.postprocess.call_args[0][0]
|
|
# self.assertEqual(len(results), 1)
|
|
# # Should have 3 tokens (based on accept_num)
|
|
# self.assertEqual(len(results[0].outputs.token_ids), 3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2, buffer=False)
|