Files
FastDeploy/tests/output/test_process_batch_output.py
2025-09-26 14:16:23 +08:00

168 lines
5.8 KiB
Python

import time
import unittest
from unittest.mock import Mock
import paddle
from fastdeploy.output.token_processor import TokenProcessor
paddle.set_device("cpu")
# Mock classes and constants needed for the test
class MockConfig:
class ParallelConfig:
local_data_parallel_id = 0
class SpeculativeConfig:
method = None
class ModelConfig:
enable_logprob = False
class SchedulerConfig:
name = "default"
parallel_config = ParallelConfig()
speculative_config = SpeculativeConfig()
model_config = ModelConfig()
scheduler_config = SchedulerConfig()
class MockTask:
def __init__(self):
self.request_id = "test_request_1"
self.arrival_time = time.time()
self.inference_start_time = time.time()
self.schedule_start_time = time.time()
self.preprocess_end_time = time.time() - 0.1
self.preprocess_start_time = time.time() - 0.2
self.eos_token_ids = [2]
self.output_token_ids = []
self.messages = "Test prompt"
self.num_cached_tokens = 0
self.disaggregate_info = None
self.prefill_chunk_info = None
self.prefill_chunk_num = 0
class MockResourceManager:
def __init__(self):
self.stop_flags = [False]
self.tasks_list = [MockTask()]
self.to_be_rescheduled_request_id_set = set()
def info(self):
return "Mock resource manager info"
def reschedule_preempt_task(self, task_id):
pass
# Constants
RECOVERY_STOP_SIGNAL = -3
MAX_BSZ = 512
K = 20
MAX_DRAFT_TOKENS = 6
SPECULATE_MAX_BSZ = 256
class TestTokenProcessorProcessBatchOutput(unittest.TestCase):
def setup_token_processor(self, speculative_decoding=False, use_logprobs=False):
"""Helper method to setup TokenProcessor with different configurations"""
cfg = MockConfig()
cfg.speculative_config.method = "mtp" if speculative_decoding else None
cfg.model_config.enable_logprob = use_logprobs
processor = TokenProcessor.__new__(TokenProcessor)
processor.cfg = cfg
processor.cached_generated_tokens = []
processor.engine_worker_queue = Mock()
processor.split_connector = Mock()
processor.resource_manager = MockResourceManager()
processor.tokens_counter = {}
processor.total_step = 0
processor.number_of_output_tokens = 0
processor.prefill_result_status = {}
processor.executor = Mock()
if speculative_decoding:
if use_logprobs:
processor.output_tokens = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1) + MAX_BSZ + 3, 1],
fill_value=2,
dtype="int64",
)
processor.output_scores = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1), 1],
fill_value=0.0,
dtype="float32",
)
processor.output_ranks = paddle.full(
shape=[MAX_BSZ * MAX_DRAFT_TOKENS],
fill_value=0,
dtype="int64",
)
else:
processor.output_tokens = paddle.full(
shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2],
fill_value=2,
dtype="int64",
)
elif use_logprobs:
processor.output_tokens = paddle.full(shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64")
processor.output_scores = paddle.full(shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32")
processor.output_ranks = paddle.full(shape=[MAX_BSZ], fill_value=0, dtype="int64")
else:
processor.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1], fill_value=2, dtype="int64")
return processor
def test_speculative_decoding_use_logprobs(self):
"""Test basic speculative decoding scenario"""
processor = self.setup_token_processor(speculative_decoding=True, use_logprobs=True)
print(f"{processor}")
# batch_size = 1
# max_draft_tokens = MAX_DRAFT_TOKENS
# # Setup speculative decoding output format
# output_tokens_np = np.full(
# SPECULATE_MAX_BSZ * max_draft_tokens + SPECULATE_MAX_BSZ + 10,
# 2,
# dtype=np.int64,
# )
# output_tokens_np[1] = batch_size # batch size
# output_tokens_np[2:2 + batch_size] = [3] # accept numbers (3 accepted tokens)
# # Setup draft tokens
# start_idx = 2 + SPECULATE_MAX_BSZ
# for i in range(batch_size):
# draft_tokens = np.arange(100, 100 + max_draft_tokens)
# output_tokens_np[
# start_idx + i * max_draft_tokens:start_idx + (i + 1) * max_draft_tokens
# ] = draft_tokens
# processor.output_tokens = paddle.to_tensor(output_tokens_np)
# processor.tokens_counter = {"test_request_1": 0}
# processor.postprocess = Mock()
# # Mock speculative decoding metrics recording
# processor._record_speculative_decoding_mertics = Mock()
# processor._compute_speculative_status = Mock()
# with patch.object(processor.resource_manager, "stop_flags", [False]):
# with patch.object(processor.resource_manager.tasks_list[0], "eos_token_ids", [2]):
# processor._process_batch_output()
# self.assertTrue(processor._record_speculative_decoding_mertics.called)
# results = processor.postprocess.call_args[0][0]
# self.assertEqual(len(results), 1)
# # Should have 3 tokens (based on accept_num)
# self.assertEqual(len(results[0].outputs.token_ids), 3)
if __name__ == "__main__":
unittest.main(verbosity=2, buffer=False)