[Backend] TRT cast GPU input from int64 to int32, output from int32 to int64, and Windows support building CUDA files (#426)

* TRT cast int64 to int32

* windows cmake build cuda src

* fix windows cmake error when build cuda src

* add a notice in windows gpu build doc

* cmake add cuda std=11

* TRT cast output from int32 to int64

* nits

* trt get original input output dtype
This commit is contained in:
Wang Xinyu
2022-10-28 13:38:06 +08:00
committed by GitHub
parent 04704c8411
commit caa369f64a
9 changed files with 181 additions and 25 deletions

View File

@@ -92,16 +92,6 @@ if(BUILD_ON_JETSON)
set(ENABLE_ORT_BACKEND ON) set(ENABLE_ORT_BACKEND ON)
endif() endif()
# Whether to build CUDA source files in fastdeploy
# CUDA source files include CUDA preprocessing, TRT plugins, etc.
if(WITH_GPU AND UNIX)
set(BUILD_CUDA_SRC ON)
enable_language(CUDA)
set(CUDA_PROPAGATE_HOST_FLAGS FALSE)
else()
set(BUILD_CUDA_SRC OFF)
endif()
# config GIT_URL with github mirrors to speed up dependent repos clone # config GIT_URL with github mirrors to speed up dependent repos clone
option(GIT_URL "Git URL to clone dependent repos" ${GIT_URL}) option(GIT_URL "Git URL to clone dependent repos" ${GIT_URL})
if(NOT GIT_URL) if(NOT GIT_URL)
@@ -177,6 +167,7 @@ configure_file(${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/core/config.h.
configure_file(${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/pybind/main.cc.in ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/pybind/main.cc) configure_file(${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/pybind/main.cc.in ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/pybind/main.cc)
file(GLOB_RECURSE ALL_DEPLOY_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/*.cc) file(GLOB_RECURSE ALL_DEPLOY_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/*.cc)
file(GLOB_RECURSE FDTENSOR_FUNC_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/function/*.cc) file(GLOB_RECURSE FDTENSOR_FUNC_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/function/*.cc)
file(GLOB_RECURSE FDTENSOR_FUNC_CUDA_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/function/*.cu)
file(GLOB_RECURSE DEPLOY_ORT_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/ort/*.cc) file(GLOB_RECURSE DEPLOY_ORT_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/ort/*.cc)
file(GLOB_RECURSE DEPLOY_PADDLE_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/paddle/*.cc) file(GLOB_RECURSE DEPLOY_PADDLE_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/paddle/*.cc)
file(GLOB_RECURSE DEPLOY_POROS_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/poros/*.cc) file(GLOB_RECURSE DEPLOY_POROS_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/fastdeploy/backends/poros/*.cc)
@@ -320,6 +311,18 @@ if(WITH_GPU)
endif() endif()
endif() endif()
# Whether to build CUDA source files in fastdeploy
# CUDA source files include CUDA preprocessing, TRT plugins, etc.
if(WITH_GPU)
set(BUILD_CUDA_SRC ON)
enable_language(CUDA)
set(CMAKE_CUDA_STANDARD 11)
set(CUDA_PROPAGATE_HOST_FLAGS FALSE)
list(APPEND ALL_DEPLOY_SRCS ${FDTENSOR_FUNC_CUDA_SRCS})
else()
set(BUILD_CUDA_SRC OFF)
endif()
if(ENABLE_TRT_BACKEND) if(ENABLE_TRT_BACKEND)
if(APPLE OR ANDROID OR IOS) if(APPLE OR ANDROID OR IOS)
message(FATAL_ERROR "Cannot enable tensorrt backend in mac/ios/android os, please set -DENABLE_TRT_BACKEND=OFF.") message(FATAL_ERROR "Cannot enable tensorrt backend in mac/ios/android os, please set -DENABLE_TRT_BACKEND=OFF.")
@@ -463,7 +466,7 @@ endif()
set_target_properties(${LIBRARY_NAME} PROPERTIES VERSION ${FASTDEPLOY_VERSION}) set_target_properties(${LIBRARY_NAME} PROPERTIES VERSION ${FASTDEPLOY_VERSION})
if(MSVC) if(MSVC)
# disable warnings for dll export # disable warnings for dll export
target_compile_options(${LIBRARY_NAME} PRIVATE /wd4251) target_compile_options(${LIBRARY_NAME} PRIVATE "$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:CXX>>:/wd4251>$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:CUDA>>:-Xcompiler=/wd4251>")
endif() endif()
target_link_libraries(${LIBRARY_NAME} ${DEPEND_LIBS}) target_link_libraries(${LIBRARY_NAME} ${DEPEND_LIBS})

View File

@@ -14,7 +14,7 @@ FastDeploy当前在GPU环境支持Paddle Inference、ONNX Runtime和TensorRT
## C++ SDK编译安装 ## C++ SDK编译安装
### Linux ### Linux
Linux上编译需满足 Linux上编译需满足
- gcc/g++ >= 5.4(推荐8.2) - gcc/g++ >= 5.4(推荐8.2)
@@ -48,6 +48,8 @@ Windows编译需要满足条件
- cuda >= 11.2 - cuda >= 11.2
- cudnn >= 8.2 - cudnn >= 8.2
注意安装CUDA时需要勾选`Visual Studio Integration`, 或者手动将`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\`文件夹下的4个文件复制到`C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\`文件夹。否则执行cmake命令时可能会遇到`No CUDA toolset found`报错。
在Windows菜单中找到`x64 Native Tools Command Prompt for VS 2019`打开,执行如下命令 在Windows菜单中找到`x64 Native Tools Command Prompt for VS 2019`打开,执行如下命令
```bat ```bat

View File

@@ -10,7 +10,7 @@ FastDeploy supports Paddle Inference, ONNX Runtime and TensorRT in the GPU envir
| TensorRT | Windows(x64)<br>Linux(x64) | Paddle/ONNX | Support GPU only, and compilation switch is `ENABLE_TRT_BACKEND`. The default is OFF | | TensorRT | Windows(x64)<br>Linux(x64) | Paddle/ONNX | Support GPU only, and compilation switch is `ENABLE_TRT_BACKEND`. The default is OFF |
| OpenVINO | Windows(x64)<br>Linux(x64) | Paddle/ONNX | Support CPU only, and compilation switch is `ENABLE_OPENVINO_BACKEND`. The default is OFF | | OpenVINO | Windows(x64)<br>Linux(x64) | Paddle/ONNX | Support CPU only, and compilation switch is `ENABLE_OPENVINO_BACKEND`. The default is OFF |
Note: Note:
When the environment is GPU, please set `WITH_GPU` as ON and specify `CUDA_DIRECTORY`. If TensorRT integration is needed, please specify `TRT_DIRECTORY` as well. When the environment is GPU, please set `WITH_GPU` as ON and specify `CUDA_DIRECTORY`. If TensorRT integration is needed, please specify `TRT_DIRECTORY` as well.
@@ -51,6 +51,8 @@ Prerequisite for Compiling on Windows:
- cuda >= 11.2 - cuda >= 11.2
- cudnn >= 8.2 - cudnn >= 8.2
Notice: Make sure `Visual Studio Integration` is installed during CUDA installation, or manually copy the 4 files under `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\` into `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\`. Otherwise, you may run into `No CUDA toolset found` error during cmake.
Launch the x64 Native Tools Command Prompt for VS 2019 from the Windows Start Menu and run the following commands: Launch the x64 Native Tools Command Prompt for VS 2019 from the Windows Start Menu and run the following commands:
``` ```

View File

@@ -13,8 +13,10 @@
// limitations under the License. // limitations under the License.
#include "fastdeploy/backends/tensorrt/trt_backend.h" #include "fastdeploy/backends/tensorrt/trt_backend.h"
#include "fastdeploy/function/cuda_cast.h"
#include <cstring> #include <cstring>
#include <unordered_map>
#include "NvInferRuntime.h" #include "NvInferRuntime.h"
#include "fastdeploy/utils/utils.h" #include "fastdeploy/utils/utils.h"
@@ -234,6 +236,7 @@ bool TrtBackend::InitFromOnnx(const std::string& model_file,
inputs_desc_[i].name = name; inputs_desc_[i].name = name;
inputs_desc_[i].shape.assign(shape.begin(), shape.end()); inputs_desc_[i].shape.assign(shape.begin(), shape.end());
inputs_desc_[i].dtype = ReaderDtypeToTrtDtype(onnx_reader.inputs[i].dtype); inputs_desc_[i].dtype = ReaderDtypeToTrtDtype(onnx_reader.inputs[i].dtype);
inputs_desc_[i].original_dtype = ReaderDtypeToFDDtype(onnx_reader.inputs[i].dtype);
auto info = ShapeRangeInfo(shape); auto info = ShapeRangeInfo(shape);
info.name = name; info.name = name;
auto iter_min = option.min_shape.find(name); auto iter_min = option.min_shape.find(name);
@@ -256,6 +259,8 @@ bool TrtBackend::InitFromOnnx(const std::string& model_file,
outputs_desc_[i].shape.assign(shape.begin(), shape.end()); outputs_desc_[i].shape.assign(shape.begin(), shape.end());
outputs_desc_[i].dtype = outputs_desc_[i].dtype =
ReaderDtypeToTrtDtype(onnx_reader.outputs[i].dtype); ReaderDtypeToTrtDtype(onnx_reader.outputs[i].dtype);
outputs_desc_[i].original_dtype =
ReaderDtypeToFDDtype(onnx_reader.outputs[i].dtype);
} }
if (option_.external_stream_) { if (option_.external_stream_) {
@@ -315,9 +320,29 @@ bool TrtBackend::Infer(std::vector<FDTensor>& inputs,
FDERROR << "Failed to Infer with TensorRT." << std::endl; FDERROR << "Failed to Infer with TensorRT." << std::endl;
return false; return false;
} }
for (size_t i = 0; i < outputs->size(); ++i) {
// if the final output tensor's dtype is different from the model output tensor's dtype,
// then we need cast the data to the final output's dtype
auto model_output_dtype = GetFDDataType(outputs_device_buffer_[(*outputs)[i].name].dtype());
if ((*outputs)[i].dtype != model_output_dtype) {
FDTensor output_tensor;
output_tensor.SetExternalData((*outputs)[i].shape, model_output_dtype,
outputs_device_buffer_[(*outputs)[i].name].data(),
Device::GPU);
casted_output_tensors_[(*outputs)[i].name].Resize((*outputs)[i].shape, (*outputs)[i].dtype,
(*outputs)[i].name, Device::GPU);
CudaCast(output_tensor, &casted_output_tensors_[(*outputs)[i].name], stream_);
} else {
casted_output_tensors_[(*outputs)[i].name].SetExternalData(
(*outputs)[i].shape, model_output_dtype,
outputs_device_buffer_[(*outputs)[i].name].data(),
Device::GPU);
}
}
for (size_t i = 0; i < outputs->size(); ++i) { for (size_t i = 0; i < outputs->size(); ++i) {
FDASSERT(cudaMemcpyAsync((*outputs)[i].Data(), FDASSERT(cudaMemcpyAsync((*outputs)[i].Data(),
outputs_device_buffer_[(*outputs)[i].name].data(), casted_output_tensors_[(*outputs)[i].name].Data(),
(*outputs)[i].Nbytes(), cudaMemcpyDeviceToHost, (*outputs)[i].Nbytes(), cudaMemcpyDeviceToHost,
stream_) == 0, stream_) == 0,
"[ERROR] Error occurs while copy memory from GPU to CPU."); "[ERROR] Error occurs while copy memory from GPU to CPU.");
@@ -329,6 +354,17 @@ bool TrtBackend::Infer(std::vector<FDTensor>& inputs,
} }
void TrtBackend::GetInputOutputInfo() { void TrtBackend::GetInputOutputInfo() {
// Read the original dtypes from inputs_desc_ and outputs_desc_
std::unordered_map<std::string, FDDataType> inputs_original_dtype_map;
std::unordered_map<std::string, FDDataType> outputs_original_dtype_map;
for (size_t i = 0; i < inputs_desc_.size(); ++i) {
inputs_original_dtype_map[inputs_desc_[i].name] = inputs_desc_[i].original_dtype;
}
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
outputs_original_dtype_map[outputs_desc_[i].name] = outputs_desc_[i].original_dtype;
}
// Re-read the tensor infos from TRT model and write into inputs_desc_ and outputs_desc_
std::vector<TrtValueInfo>().swap(inputs_desc_); std::vector<TrtValueInfo>().swap(inputs_desc_);
std::vector<TrtValueInfo>().swap(outputs_desc_); std::vector<TrtValueInfo>().swap(outputs_desc_);
inputs_desc_.clear(); inputs_desc_.clear();
@@ -339,11 +375,14 @@ void TrtBackend::GetInputOutputInfo() {
auto shape = ToVec(engine_->getBindingDimensions(i)); auto shape = ToVec(engine_->getBindingDimensions(i));
auto dtype = engine_->getBindingDataType(i); auto dtype = engine_->getBindingDataType(i);
if (engine_->bindingIsInput(i)) { if (engine_->bindingIsInput(i)) {
inputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype}); auto original_dtype = inputs_original_dtype_map.count(name) ? inputs_original_dtype_map[name] : GetFDDataType(dtype);
inputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype, original_dtype});
inputs_device_buffer_[name] = FDDeviceBuffer(dtype); inputs_device_buffer_[name] = FDDeviceBuffer(dtype);
} else { } else {
outputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype}); auto original_dtype = outputs_original_dtype_map.count(name) ? outputs_original_dtype_map[name] : GetFDDataType(dtype);
outputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype, original_dtype});
outputs_device_buffer_[name] = FDDeviceBuffer(dtype); outputs_device_buffer_[name] = FDDeviceBuffer(dtype);
casted_output_tensors_[name] = FDTensor();
} }
} }
bindings_.resize(num_binds); bindings_.resize(num_binds);
@@ -358,11 +397,12 @@ void TrtBackend::SetInputs(const std::vector<FDTensor>& inputs) {
if (item.device == Device::GPU) { if (item.device == Device::GPU) {
if (item.dtype == FDDataType::INT64) { if (item.dtype == FDDataType::INT64) {
// TODO(liqi): cast int64 to int32 inputs_device_buffer_[item.name].resize(dims);
// TRT don't support INT64 FDTensor input_tensor;
FDASSERT(false, input_tensor.SetExternalData(item.shape, FDDataType::INT32,
"TRT don't support INT64 input on GPU, " inputs_device_buffer_[item.name].data(),
"please use INT32 input"); Device::GPU);
CudaCast(item, &input_tensor, stream_);
} else { } else {
// no copy // no copy
inputs_device_buffer_[item.name].SetExternalData(dims, item.Data()); inputs_device_buffer_[item.name].SetExternalData(dims, item.Data());
@@ -413,7 +453,7 @@ void TrtBackend::AllocateOutputsBuffer(std::vector<FDTensor>* outputs) {
std::vector<int64_t> shape(output_dims.d, std::vector<int64_t> shape(output_dims.d,
output_dims.d + output_dims.nbDims); output_dims.d + output_dims.nbDims);
(*outputs)[ori_idx].is_pinned_memory = option_.enable_pinned_memory; (*outputs)[ori_idx].is_pinned_memory = option_.enable_pinned_memory;
(*outputs)[ori_idx].Resize(shape, GetFDDataType(outputs_desc_[i].dtype), (*outputs)[ori_idx].Resize(shape, outputs_desc_[i].original_dtype,
outputs_desc_[i].name); outputs_desc_[i].name);
// Allocate output buffer memory // Allocate output buffer memory
@@ -629,7 +669,7 @@ TensorInfo TrtBackend::GetInputInfo(int index) {
info.name = inputs_desc_[index].name; info.name = inputs_desc_[index].name;
info.shape.assign(inputs_desc_[index].shape.begin(), info.shape.assign(inputs_desc_[index].shape.begin(),
inputs_desc_[index].shape.end()); inputs_desc_[index].shape.end());
info.dtype = GetFDDataType(inputs_desc_[index].dtype); info.dtype = inputs_desc_[index].original_dtype;
return info; return info;
} }
@@ -649,7 +689,7 @@ TensorInfo TrtBackend::GetOutputInfo(int index) {
info.name = outputs_desc_[index].name; info.name = outputs_desc_[index].name;
info.shape.assign(outputs_desc_[index].shape.begin(), info.shape.assign(outputs_desc_[index].shape.begin(),
outputs_desc_[index].shape.end()); outputs_desc_[index].shape.end());
info.dtype = GetFDDataType(outputs_desc_[index].dtype); info.dtype = outputs_desc_[index].original_dtype;
return info; return info;
} }

View File

@@ -57,7 +57,8 @@ namespace fastdeploy {
struct TrtValueInfo { struct TrtValueInfo {
std::string name; std::string name;
std::vector<int> shape; std::vector<int> shape;
nvinfer1::DataType dtype; nvinfer1::DataType dtype; // dtype of TRT model
FDDataType original_dtype; // dtype of original ONNX/Paddle model
}; };
struct TrtBackendOption { struct TrtBackendOption {
@@ -141,6 +142,13 @@ class TrtBackend : public BaseBackend {
// Also will update the range information while inferencing // Also will update the range information while inferencing
std::map<std::string, ShapeRangeInfo> shape_range_info_; std::map<std::string, ShapeRangeInfo> shape_range_info_;
// If the final output tensor's dtype is different from the
// model output tensor's dtype, then we need cast the data
// to the final output's dtype.
// E.g. When trt model output tensor is int32, but final tensor is int64
// This map stores the casted tensors.
std::map<std::string, FDTensor> casted_output_tensors_;
void GetInputOutputInfo(); void GetInputOutputInfo();
bool CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer); bool CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer);
bool BuildTrtEngine(); bool BuildTrtEngine();

View File

@@ -104,6 +104,26 @@ nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype) {
return nvinfer1::DataType::kFLOAT; return nvinfer1::DataType::kFLOAT;
} }
FDDataType ReaderDtypeToFDDtype(int reader_dtype) {
if (reader_dtype == 0) {
return FDDataType::FP32;
} else if (reader_dtype == 1) {
return FDDataType::FP64;
} else if (reader_dtype == 2) {
return FDDataType::UINT8;
} else if (reader_dtype == 3) {
return FDDataType::INT8;
} else if (reader_dtype == 4) {
return FDDataType::INT32;
} else if (reader_dtype == 5) {
return FDDataType::INT64;
} else if (reader_dtype == 6) {
return FDDataType::FP16;
}
FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
return FDDataType::FP32;
}
std::vector<int> ToVec(const nvinfer1::Dims& dim) { std::vector<int> ToVec(const nvinfer1::Dims& dim) {
std::vector<int> out(dim.d, dim.d + dim.nbDims); std::vector<int> out(dim.d, dim.d + dim.nbDims);
return out; return out;

View File

@@ -55,6 +55,8 @@ FDDataType GetFDDataType(const nvinfer1::DataType& dtype);
nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype); nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype);
FDDataType ReaderDtypeToFDDtype(int reader_dtype);
std::vector<int> ToVec(const nvinfer1::Dims& dim); std::vector<int> ToVec(const nvinfer1::Dims& dim);
template <typename T> template <typename T>
@@ -153,6 +155,11 @@ class FDGenericBuffer {
//! //!
size_t nbBytes() const { return this->size() * TrtDataTypeSize(mType); } size_t nbBytes() const { return this->size() * TrtDataTypeSize(mType); }
//!
//! \brief Returns the dtype of the buffer.
//!
nvinfer1::DataType dtype() const { return mType; }
//! //!
//! \brief Set user memory buffer for TRT Buffer //! \brief Set user memory buffer for TRT Buffer
//! //!

View File

@@ -0,0 +1,45 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/cuda_cast.h"
namespace fastdeploy {
template <typename T_IN, typename T_OUT>
__global__ void CudaCastKernel(const T_IN* in, T_OUT* out, int edge) {
int position = blockDim.x * blockIdx.x + threadIdx.x;
if (position >= edge) return;
out[position] = (T_OUT)in[position];
}
void CudaCast(const FDTensor& in, FDTensor* out, cudaStream_t stream) {
int jobs = in.Numel();
int threads = 256;
int blocks = ceil(jobs / (float)threads);
if (in.dtype == FDDataType::INT64 && out->dtype == FDDataType::INT32) {
CudaCastKernel<int64_t, int32_t><<<blocks, threads, 0, stream>>>(
reinterpret_cast<int64_t*>(const_cast<void*>(in.Data())),
reinterpret_cast<int32_t*>(out->MutableData()),
jobs);
} else if (in.dtype == FDDataType::INT32 && out->dtype == FDDataType::INT64) {
CudaCastKernel<int32_t, int64_t><<<blocks, threads, 0, stream>>>(
reinterpret_cast<int32_t*>(const_cast<void*>(in.Data())),
reinterpret_cast<int64_t*>(out->MutableData()),
jobs);
} else {
FDASSERT(false, "CudaCast only support input INT64, output INT32.");
}
}
} // namespace fastdeploy

View File

@@ -0,0 +1,29 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
namespace fastdeploy {
/** Cast the type of the data in GPU buffer.
@param in The input tensor.
@param out The output tensor
@param stream CUDA stream
*/
FASTDEPLOY_DECL void CudaCast(const FDTensor& in, FDTensor* out,
cudaStream_t stream);
} // namespace fastdeploy