mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* TRT cast int64 to int32 * windows cmake build cuda src * fix windows cmake error when build cuda src * add a notice in windows gpu build doc * cmake add cuda std=11 * TRT cast output from int32 to int64 * nits * trt get original input output dtype
161 lines
5.1 KiB
C++
161 lines
5.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/backends/tensorrt/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
int ShapeRangeInfo::Update(const std::vector<int64_t>& new_shape) {
|
|
if (new_shape.size() != shape.size()) {
|
|
return -1;
|
|
}
|
|
int need_update_engine = 0;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (is_static[i] == 1 && new_shape[i] != shape[i]) {
|
|
return -1;
|
|
}
|
|
if (new_shape[i] < min[i] || min[i] < 0) {
|
|
need_update_engine = 1;
|
|
}
|
|
if (new_shape[i] > max[i] || max[i] < 0) {
|
|
need_update_engine = 1;
|
|
}
|
|
}
|
|
|
|
if (need_update_engine == 0) {
|
|
return 0;
|
|
}
|
|
|
|
FDWARNING << "[New Shape Out of Range] input name: " << name
|
|
<< ", shape: " << new_shape
|
|
<< ", The shape range before: min_shape=" << min
|
|
<< ", max_shape=" << max << "." << std::endl;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
if (new_shape[i] < min[i] || min[i] < 0) {
|
|
min[i] = new_shape[i];
|
|
}
|
|
if (new_shape[i] > max[i] || max[i] < 0) {
|
|
max[i] = new_shape[i];
|
|
}
|
|
}
|
|
FDWARNING
|
|
<< "[New Shape Out of Range] The updated shape range now: min_shape="
|
|
<< min << ", max_shape=" << max << "." << std::endl;
|
|
return need_update_engine;
|
|
}
|
|
|
|
size_t TrtDataTypeSize(const nvinfer1::DataType& dtype) {
|
|
if (dtype == nvinfer1::DataType::kFLOAT) {
|
|
return sizeof(float);
|
|
} else if (dtype == nvinfer1::DataType::kHALF) {
|
|
return sizeof(float) / 2;
|
|
} else if (dtype == nvinfer1::DataType::kINT8) {
|
|
return sizeof(int8_t);
|
|
} else if (dtype == nvinfer1::DataType::kINT32) {
|
|
return sizeof(int32_t);
|
|
}
|
|
// kBOOL
|
|
return sizeof(bool);
|
|
}
|
|
|
|
FDDataType GetFDDataType(const nvinfer1::DataType& dtype) {
|
|
if (dtype == nvinfer1::DataType::kFLOAT) {
|
|
return FDDataType::FP32;
|
|
} else if (dtype == nvinfer1::DataType::kHALF) {
|
|
return FDDataType::FP16;
|
|
} else if (dtype == nvinfer1::DataType::kINT8) {
|
|
return FDDataType::INT8;
|
|
} else if (dtype == nvinfer1::DataType::kINT32) {
|
|
return FDDataType::INT32;
|
|
}
|
|
// kBOOL
|
|
return FDDataType::BOOL;
|
|
}
|
|
|
|
nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype) {
|
|
if (reader_dtype == 0) {
|
|
return nvinfer1::DataType::kFLOAT;
|
|
} else if (reader_dtype == 1) {
|
|
FDASSERT(false, "TensorRT cannot support data type of double now.");
|
|
} else if (reader_dtype == 2) {
|
|
FDASSERT(false, "TensorRT cannot support data type of uint8 now.");
|
|
} else if (reader_dtype == 3) {
|
|
return nvinfer1::DataType::kINT8;
|
|
} else if (reader_dtype == 4) {
|
|
return nvinfer1::DataType::kINT32;
|
|
} else if (reader_dtype == 5) {
|
|
// regard int64 as int32
|
|
return nvinfer1::DataType::kINT32;
|
|
} else if (reader_dtype == 6) {
|
|
return nvinfer1::DataType::kHALF;
|
|
}
|
|
FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
|
|
return nvinfer1::DataType::kFLOAT;
|
|
}
|
|
|
|
FDDataType ReaderDtypeToFDDtype(int reader_dtype) {
|
|
if (reader_dtype == 0) {
|
|
return FDDataType::FP32;
|
|
} else if (reader_dtype == 1) {
|
|
return FDDataType::FP64;
|
|
} else if (reader_dtype == 2) {
|
|
return FDDataType::UINT8;
|
|
} else if (reader_dtype == 3) {
|
|
return FDDataType::INT8;
|
|
} else if (reader_dtype == 4) {
|
|
return FDDataType::INT32;
|
|
} else if (reader_dtype == 5) {
|
|
return FDDataType::INT64;
|
|
} else if (reader_dtype == 6) {
|
|
return FDDataType::FP16;
|
|
}
|
|
FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
|
|
return FDDataType::FP32;
|
|
}
|
|
|
|
std::vector<int> ToVec(const nvinfer1::Dims& dim) {
|
|
std::vector<int> out(dim.d, dim.d + dim.nbDims);
|
|
return out;
|
|
}
|
|
|
|
int64_t Volume(const nvinfer1::Dims& d) {
|
|
return std::accumulate(d.d, d.d + d.nbDims, 1, std::multiplies<int64_t>());
|
|
}
|
|
|
|
nvinfer1::Dims ToDims(const std::vector<int>& vec) {
|
|
int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
|
|
if (static_cast<int>(vec.size()) > limit) {
|
|
FDWARNING << "Vector too long, only first 8 elements are used in dimension."
|
|
<< std::endl;
|
|
}
|
|
// Pick first nvinfer1::Dims::MAX_DIMS elements
|
|
nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
|
|
std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
|
|
return dims;
|
|
}
|
|
|
|
nvinfer1::Dims ToDims(const std::vector<int64_t>& vec) {
|
|
int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
|
|
if (static_cast<int>(vec.size()) > limit) {
|
|
FDWARNING << "Vector too long, only first 8 elements are used in dimension."
|
|
<< std::endl;
|
|
}
|
|
// Pick first nvinfer1::Dims::MAX_DIMS elements
|
|
nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
|
|
std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
|
|
return dims;
|
|
}
|
|
|
|
} // namespace fastdeploy
|