Files
FastDeploy/fastdeploy/backends/tensorrt/trt_backend.cc
Wang Xinyu caa369f64a [Backend] TRT cast GPU input from int64 to int32, output from int32 to int64, and Windows support building CUDA files (#426)
* TRT cast int64 to int32

* windows cmake build cuda src

* fix windows cmake error when build cuda src

* add a notice in windows gpu build doc

* cmake add cuda std=11

* TRT cast output from int32 to int64

* nits

* trt get original input output dtype
2022-10-28 13:38:06 +08:00

705 lines
26 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#include "fastdeploy/function/cuda_cast.h"
#include <cstring>
#include <unordered_map>
#include "NvInferRuntime.h"
#include "fastdeploy/utils/utils.h"
#ifdef ENABLE_PADDLE_FRONTEND
#include "paddle2onnx/converter.h"
#endif
namespace fastdeploy {
FDTrtLogger* FDTrtLogger::logger = nullptr;
// Check if the model can build tensorrt engine now
// If the model has dynamic input shape, it will require defined shape
// information We can set the shape range information by function
// SetTrtInputShape() But if the shape range is not defined, then the engine
// cannot build, in this case, The engine will build once there's data feeded,
// and the shape range will be updated
bool CanBuildEngine(
const std::map<std::string, ShapeRangeInfo>& shape_range_info) {
for (auto iter = shape_range_info.begin(); iter != shape_range_info.end();
++iter) {
bool is_full_static = true;
for (size_t i = 0; i < iter->second.shape.size(); ++i) {
if (iter->second.shape[i] < 0) {
is_full_static = false;
break;
}
}
if (is_full_static) {
continue;
}
for (size_t i = 0; i < iter->second.shape.size(); ++i) {
if (iter->second.min[i] < 0 || iter->second.max[i] < 0) {
return false;
}
}
}
return true;
}
bool TrtBackend::LoadTrtCache(const std::string& trt_engine_file) {
cudaSetDevice(option_.gpu_id);
std::string engine_buffer;
if (!ReadBinaryFromFile(trt_engine_file, &engine_buffer)) {
FDERROR << "Failed to load TensorRT Engine from " << trt_engine_file << "."
<< std::endl;
return false;
}
FDUniquePtr<nvinfer1::IRuntime> runtime{
nvinfer1::createInferRuntime(*FDTrtLogger::Get())};
if (!runtime) {
FDERROR << "Failed to call createInferRuntime()." << std::endl;
return false;
}
engine_ = std::shared_ptr<nvinfer1::ICudaEngine>(
runtime->deserializeCudaEngine(engine_buffer.data(),
engine_buffer.size()),
FDInferDeleter());
if (!engine_) {
FDERROR << "Failed to call deserializeCudaEngine()." << std::endl;
return false;
}
context_ = std::shared_ptr<nvinfer1::IExecutionContext>(
engine_->createExecutionContext());
GetInputOutputInfo();
for (int32_t i = 0; i < engine_->getNbBindings(); ++i) {
if (!engine_->bindingIsInput(i)) {
continue;
}
auto min = ToVec(engine_->getProfileDimensions(
i, 0, nvinfer1::OptProfileSelector::kMAX));
auto max = ToVec(engine_->getProfileDimensions(
i, 0, nvinfer1::OptProfileSelector::kMIN));
auto name = std::string(engine_->getBindingName(i));
auto iter = shape_range_info_.find(name);
if (iter == shape_range_info_.end()) {
FDERROR << "There's no input named '" << name << "' in loaded model."
<< std::endl;
return false;
}
iter->second.Update(min);
iter->second.Update(max);
}
FDINFO << "Build TensorRT Engine from cache file: " << trt_engine_file
<< " with shape range information as below," << std::endl;
for (const auto& item : shape_range_info_) {
FDINFO << item.second << std::endl;
}
return true;
}
bool TrtBackend::InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const TrtBackendOption& option, bool verbose) {
if (initialized_) {
FDERROR << "TrtBackend is already initlized, cannot initialize again."
<< std::endl;
return false;
}
option_ = option;
#ifdef ENABLE_PADDLE_FRONTEND
std::vector<paddle2onnx::CustomOp> custom_ops;
for (auto& item : option_.custom_op_info_) {
paddle2onnx::CustomOp op;
std::strcpy(op.op_name, item.first.c_str());
std::strcpy(op.export_op_name, item.second.c_str());
custom_ops.emplace_back(op);
}
char* model_content_ptr;
int model_content_size = 0;
char* calibration_cache_ptr;
int calibration_cache_size = 0;
if (!paddle2onnx::Export(model_file.c_str(), params_file.c_str(),
&model_content_ptr, &model_content_size, 11, true,
verbose, true, true, true, custom_ops.data(),
custom_ops.size(), "tensorrt",
&calibration_cache_ptr, &calibration_cache_size)) {
FDERROR << "Error occured while export PaddlePaddle to ONNX format."
<< std::endl;
return false;
}
if (option_.remove_multiclass_nms_) {
char* new_model = nullptr;
int new_model_size = 0;
if (!paddle2onnx::RemoveMultiClassNMS(model_content_ptr, model_content_size,
&new_model, &new_model_size)) {
FDERROR << "Try to remove MultiClassNMS failed." << std::endl;
return false;
}
delete[] model_content_ptr;
std::string onnx_model_proto(new_model, new_model + new_model_size);
delete[] new_model;
if (calibration_cache_size) {
std::string calibration_str(
calibration_cache_ptr,
calibration_cache_ptr + calibration_cache_size);
calibration_str_ = calibration_str;
delete[] calibration_cache_ptr;
}
return InitFromOnnx(onnx_model_proto, option, true);
}
std::string onnx_model_proto(model_content_ptr,
model_content_ptr + model_content_size);
delete[] model_content_ptr;
model_content_ptr = nullptr;
if (calibration_cache_size) {
std::string calibration_str(calibration_cache_ptr,
calibration_cache_ptr + calibration_cache_size);
calibration_str_ = calibration_str;
delete[] calibration_cache_ptr;
}
return InitFromOnnx(onnx_model_proto, option, true);
#else
FDERROR << "Didn't compile with PaddlePaddle frontend, you can try to "
"call `InitFromOnnx` instead."
<< std::endl;
return false;
#endif
}
bool TrtBackend::InitFromOnnx(const std::string& model_file,
const TrtBackendOption& option,
bool from_memory_buffer) {
if (initialized_) {
FDERROR << "TrtBackend is already initlized, cannot initialize again."
<< std::endl;
return false;
}
option_ = option;
cudaSetDevice(option_.gpu_id);
std::string onnx_content = "";
if (!from_memory_buffer) {
std::ifstream fin(model_file.c_str(), std::ios::binary | std::ios::in);
if (!fin) {
FDERROR << "[ERROR] Failed to open ONNX model file: " << model_file
<< std::endl;
return false;
}
fin.seekg(0, std::ios::end);
onnx_content.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(onnx_content.at(0)), onnx_content.size());
fin.close();
} else {
onnx_content = model_file;
}
// This part of code will record the original outputs order
// because the converted tensorrt network may exist wrong order of outputs
outputs_order_.clear();
auto onnx_reader =
paddle2onnx::OnnxReader(onnx_content.c_str(), onnx_content.size());
for (int i = 0; i < onnx_reader.num_outputs; ++i) {
std::string name(onnx_reader.outputs[i].name);
outputs_order_[name] = i;
}
shape_range_info_.clear();
inputs_desc_.clear();
outputs_desc_.clear();
inputs_desc_.resize(onnx_reader.num_inputs);
outputs_desc_.resize(onnx_reader.num_outputs);
for (int i = 0; i < onnx_reader.num_inputs; ++i) {
std::string name(onnx_reader.inputs[i].name);
std::vector<int64_t> shape(
onnx_reader.inputs[i].shape,
onnx_reader.inputs[i].shape + onnx_reader.inputs[i].rank);
inputs_desc_[i].name = name;
inputs_desc_[i].shape.assign(shape.begin(), shape.end());
inputs_desc_[i].dtype = ReaderDtypeToTrtDtype(onnx_reader.inputs[i].dtype);
inputs_desc_[i].original_dtype = ReaderDtypeToFDDtype(onnx_reader.inputs[i].dtype);
auto info = ShapeRangeInfo(shape);
info.name = name;
auto iter_min = option.min_shape.find(name);
auto iter_max = option.max_shape.find(name);
auto iter_opt = option.opt_shape.find(name);
if (iter_min != option.min_shape.end()) {
info.min.assign(iter_min->second.begin(), iter_min->second.end());
info.max.assign(iter_max->second.begin(), iter_max->second.end());
info.opt.assign(iter_opt->second.begin(), iter_opt->second.end());
}
shape_range_info_.insert(std::make_pair(name, info));
}
for (int i = 0; i < onnx_reader.num_outputs; ++i) {
std::string name(onnx_reader.outputs[i].name);
std::vector<int64_t> shape(
onnx_reader.outputs[i].shape,
onnx_reader.outputs[i].shape + onnx_reader.outputs[i].rank);
outputs_desc_[i].name = name;
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
outputs_desc_[i].dtype =
ReaderDtypeToTrtDtype(onnx_reader.outputs[i].dtype);
outputs_desc_[i].original_dtype =
ReaderDtypeToFDDtype(onnx_reader.outputs[i].dtype);
}
if (option_.external_stream_) {
stream_ = reinterpret_cast<cudaStream_t>(option_.external_stream_);
} else {
FDASSERT(cudaStreamCreate(&stream_) == 0,
"[ERROR] Error occurs while calling cudaStreamCreate().");
}
if (!CreateTrtEngineFromOnnx(onnx_content)) {
FDERROR << "Failed to create tensorrt engine." << std::endl;
return false;
}
initialized_ = true;
return true;
}
int TrtBackend::ShapeRangeInfoUpdated(const std::vector<FDTensor>& inputs) {
bool need_update_engine = false;
for (size_t i = 0; i < inputs.size(); ++i) {
auto iter = shape_range_info_.find(inputs[i].name);
if (iter == shape_range_info_.end()) {
FDERROR << "There's no input named '" << inputs[i].name
<< "' in loaded model." << std::endl;
}
if (iter->second.Update(inputs[i].shape) == 1) {
need_update_engine = true;
}
}
return need_update_engine;
}
bool TrtBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs) {
if (inputs.size() != NumInputs()) {
FDERROR << "Require " << NumInputs() << "inputs, but get " << inputs.size()
<< "." << std::endl;
return false;
}
if (ShapeRangeInfoUpdated(inputs)) {
// meet new shape output of predefined max/min shape
// rebuild the tensorrt engine
FDWARNING
<< "TensorRT engine will be rebuilt once shape range information "
"changed, this may take lots of time, you can set a proper shape "
"range before loading model to avoid rebuilding process. refer "
"https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/faq/"
"tensorrt_tricks.md for more details."
<< std::endl;
BuildTrtEngine();
}
SetInputs(inputs);
AllocateOutputsBuffer(outputs);
if (!context_->enqueueV2(bindings_.data(), stream_, nullptr)) {
FDERROR << "Failed to Infer with TensorRT." << std::endl;
return false;
}
for (size_t i = 0; i < outputs->size(); ++i) {
// if the final output tensor's dtype is different from the model output tensor's dtype,
// then we need cast the data to the final output's dtype
auto model_output_dtype = GetFDDataType(outputs_device_buffer_[(*outputs)[i].name].dtype());
if ((*outputs)[i].dtype != model_output_dtype) {
FDTensor output_tensor;
output_tensor.SetExternalData((*outputs)[i].shape, model_output_dtype,
outputs_device_buffer_[(*outputs)[i].name].data(),
Device::GPU);
casted_output_tensors_[(*outputs)[i].name].Resize((*outputs)[i].shape, (*outputs)[i].dtype,
(*outputs)[i].name, Device::GPU);
CudaCast(output_tensor, &casted_output_tensors_[(*outputs)[i].name], stream_);
} else {
casted_output_tensors_[(*outputs)[i].name].SetExternalData(
(*outputs)[i].shape, model_output_dtype,
outputs_device_buffer_[(*outputs)[i].name].data(),
Device::GPU);
}
}
for (size_t i = 0; i < outputs->size(); ++i) {
FDASSERT(cudaMemcpyAsync((*outputs)[i].Data(),
casted_output_tensors_[(*outputs)[i].name].Data(),
(*outputs)[i].Nbytes(), cudaMemcpyDeviceToHost,
stream_) == 0,
"[ERROR] Error occurs while copy memory from GPU to CPU.");
}
FDASSERT(cudaStreamSynchronize(stream_) == cudaSuccess,
"[ERROR] Error occurs while sync cuda stream.");
return true;
}
void TrtBackend::GetInputOutputInfo() {
// Read the original dtypes from inputs_desc_ and outputs_desc_
std::unordered_map<std::string, FDDataType> inputs_original_dtype_map;
std::unordered_map<std::string, FDDataType> outputs_original_dtype_map;
for (size_t i = 0; i < inputs_desc_.size(); ++i) {
inputs_original_dtype_map[inputs_desc_[i].name] = inputs_desc_[i].original_dtype;
}
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
outputs_original_dtype_map[outputs_desc_[i].name] = outputs_desc_[i].original_dtype;
}
// Re-read the tensor infos from TRT model and write into inputs_desc_ and outputs_desc_
std::vector<TrtValueInfo>().swap(inputs_desc_);
std::vector<TrtValueInfo>().swap(outputs_desc_);
inputs_desc_.clear();
outputs_desc_.clear();
auto num_binds = engine_->getNbBindings();
for (auto i = 0; i < num_binds; ++i) {
std::string name = std::string(engine_->getBindingName(i));
auto shape = ToVec(engine_->getBindingDimensions(i));
auto dtype = engine_->getBindingDataType(i);
if (engine_->bindingIsInput(i)) {
auto original_dtype = inputs_original_dtype_map.count(name) ? inputs_original_dtype_map[name] : GetFDDataType(dtype);
inputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype, original_dtype});
inputs_device_buffer_[name] = FDDeviceBuffer(dtype);
} else {
auto original_dtype = outputs_original_dtype_map.count(name) ? outputs_original_dtype_map[name] : GetFDDataType(dtype);
outputs_desc_.emplace_back(TrtValueInfo{name, shape, dtype, original_dtype});
outputs_device_buffer_[name] = FDDeviceBuffer(dtype);
casted_output_tensors_[name] = FDTensor();
}
}
bindings_.resize(num_binds);
}
void TrtBackend::SetInputs(const std::vector<FDTensor>& inputs) {
for (const auto& item : inputs) {
auto idx = engine_->getBindingIndex(item.name.c_str());
std::vector<int> shape(item.shape.begin(), item.shape.end());
auto dims = ToDims(shape);
context_->setBindingDimensions(idx, dims);
if (item.device == Device::GPU) {
if (item.dtype == FDDataType::INT64) {
inputs_device_buffer_[item.name].resize(dims);
FDTensor input_tensor;
input_tensor.SetExternalData(item.shape, FDDataType::INT32,
inputs_device_buffer_[item.name].data(),
Device::GPU);
CudaCast(item, &input_tensor, stream_);
} else {
// no copy
inputs_device_buffer_[item.name].SetExternalData(dims, item.Data());
}
} else {
// Allocate input buffer memory
inputs_device_buffer_[item.name].resize(dims);
// copy from cpu to gpu
if (item.dtype == FDDataType::INT64) {
int64_t* data = static_cast<int64_t*>(const_cast<void*>(item.Data()));
std::vector<int32_t> casted_data(data, data + item.Numel());
FDASSERT(cudaMemcpyAsync(inputs_device_buffer_[item.name].data(),
static_cast<void*>(casted_data.data()),
item.Nbytes() / 2, cudaMemcpyHostToDevice,
stream_) == 0,
"Error occurs while copy memory from CPU to GPU.");
} else {
FDASSERT(cudaMemcpyAsync(inputs_device_buffer_[item.name].data(),
item.Data(),
item.Nbytes(), cudaMemcpyHostToDevice,
stream_) == 0,
"Error occurs while copy memory from CPU to GPU.");
}
}
// binding input buffer
bindings_[idx] = inputs_device_buffer_[item.name].data();
}
}
void TrtBackend::AllocateOutputsBuffer(std::vector<FDTensor>* outputs) {
if (outputs->size() != outputs_desc_.size()) {
outputs->resize(outputs_desc_.size());
}
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
auto idx = engine_->getBindingIndex(outputs_desc_[i].name.c_str());
auto output_dims = context_->getBindingDimensions(idx);
// find the original index of output
auto iter = outputs_order_.find(outputs_desc_[i].name);
FDASSERT(
iter != outputs_order_.end(),
"Cannot find output: %s of tensorrt network from the original model.",
outputs_desc_[i].name.c_str());
auto ori_idx = iter->second;
// set user's outputs info
std::vector<int64_t> shape(output_dims.d,
output_dims.d + output_dims.nbDims);
(*outputs)[ori_idx].is_pinned_memory = option_.enable_pinned_memory;
(*outputs)[ori_idx].Resize(shape, outputs_desc_[i].original_dtype,
outputs_desc_[i].name);
// Allocate output buffer memory
outputs_device_buffer_[outputs_desc_[i].name].resize(output_dims);
// binding output buffer
bindings_[idx] = outputs_device_buffer_[outputs_desc_[i].name].data();
}
}
bool TrtBackend::BuildTrtEngine() {
auto config =
FDUniquePtr<nvinfer1::IBuilderConfig>(builder_->createBuilderConfig());
if (!config) {
FDERROR << "Failed to call createBuilderConfig()." << std::endl;
return false;
}
if (option_.enable_fp16) {
if (!builder_->platformHasFastFp16()) {
FDWARNING << "Detected FP16 is not supported in the current GPU, "
"will use FP32 instead."
<< std::endl;
} else {
FDINFO << "[TrtBackend] Use FP16 to inference." << std::endl;
config->setFlag(nvinfer1::BuilderFlag::kFP16);
}
}
FDINFO << "Start to building TensorRT Engine..." << std::endl;
if (context_) {
context_.reset();
engine_.reset();
}
builder_->setMaxBatchSize(option_.max_batch_size);
config->setMaxWorkspaceSize(option_.max_workspace_size);
auto profile = builder_->createOptimizationProfile();
for (const auto& item : shape_range_info_) {
FDASSERT(
profile->setDimensions(item.first.c_str(),
nvinfer1::OptProfileSelector::kMIN,
ToDims(item.second.min)),
"[TrtBackend] Failed to set min_shape for input: %s in TrtBackend.",
item.first.c_str());
FDASSERT(
profile->setDimensions(item.first.c_str(),
nvinfer1::OptProfileSelector::kMAX,
ToDims(item.second.max)),
"[TrtBackend] Failed to set max_shape for input: %s in TrtBackend.",
item.first.c_str());
if (item.second.opt.size() == 0) {
FDASSERT(
profile->setDimensions(item.first.c_str(),
nvinfer1::OptProfileSelector::kOPT,
ToDims(item.second.max)),
"[TrtBackend] Failed to set opt_shape for input: %s in TrtBackend.",
item.first.c_str());
} else {
FDASSERT(
item.second.opt.size() == item.second.shape.size(),
"Require the dimension of opt in shape range information equal to "
"dimension of input: %s in this model, but now it's %zu != %zu.",
item.first.c_str(), item.second.opt.size(), item.second.shape.size());
FDASSERT(
profile->setDimensions(item.first.c_str(),
nvinfer1::OptProfileSelector::kOPT,
ToDims(item.second.opt)),
"[TrtBackend] Failed to set opt_shape for input: %s in TrtBackend.",
item.first.c_str());
}
}
config->addOptimizationProfile(profile);
if (calibration_str_.size()) {
if (!builder_->platformHasFastInt8()) {
FDWARNING << "Detected INT8 is not supported in the current GPU, "
"will use FP32 instead."
<< std::endl;
} else {
FDINFO << "[TrtBackend] Use INT8 to inference." << std::endl;
config->setFlag(nvinfer1::BuilderFlag::kINT8);
Int8EntropyCalibrator2* calibrator =
new Int8EntropyCalibrator2(calibration_str_);
config->setInt8Calibrator(calibrator);
}
}
FDUniquePtr<nvinfer1::IHostMemory> plan{
builder_->buildSerializedNetwork(*network_, *config)};
if (!plan) {
FDERROR << "Failed to call buildSerializedNetwork()." << std::endl;
return false;
}
FDUniquePtr<nvinfer1::IRuntime> runtime{
nvinfer1::createInferRuntime(*FDTrtLogger::Get())};
if (!runtime) {
FDERROR << "Failed to call createInferRuntime()." << std::endl;
return false;
}
engine_ = std::shared_ptr<nvinfer1::ICudaEngine>(
runtime->deserializeCudaEngine(plan->data(), plan->size()),
FDInferDeleter());
if (!engine_) {
FDERROR << "Failed to call deserializeCudaEngine()." << std::endl;
return false;
}
context_ = std::shared_ptr<nvinfer1::IExecutionContext>(
engine_->createExecutionContext());
GetInputOutputInfo();
FDINFO << "TensorRT Engine is built successfully." << std::endl;
if (option_.serialize_file != "") {
FDINFO << "Serialize TensorRTEngine to local file "
<< option_.serialize_file << "." << std::endl;
std::ofstream engine_file(option_.serialize_file.c_str(), std::ios::binary | std::ios::out);
if (!engine_file) {
FDERROR << "Failed to open " << option_.serialize_file << " to write."
<< std::endl;
return false;
}
engine_file.write(static_cast<char*>(plan->data()), plan->size());
engine_file.close();
FDINFO << "TensorRTEngine is serialized to local file "
<< option_.serialize_file
<< ", we can load this model from the seralized engine "
"directly next time."
<< std::endl;
}
return true;
}
bool TrtBackend::CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer) {
const auto explicitBatch =
1U << static_cast<uint32_t>(
nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
builder_ = FDUniquePtr<nvinfer1::IBuilder>(
nvinfer1::createInferBuilder(*FDTrtLogger::Get()));
if (!builder_) {
FDERROR << "Failed to call createInferBuilder()." << std::endl;
return false;
}
network_ = FDUniquePtr<nvinfer1::INetworkDefinition>(
builder_->createNetworkV2(explicitBatch));
if (!network_) {
FDERROR << "Failed to call createNetworkV2()." << std::endl;
return false;
}
parser_ = FDUniquePtr<nvonnxparser::IParser>(
nvonnxparser::createParser(*network_, *FDTrtLogger::Get()));
if (!parser_) {
FDERROR << "Failed to call createParser()." << std::endl;
return false;
}
if (!parser_->parse(onnx_model_buffer.data(), onnx_model_buffer.size())) {
FDERROR << "Failed to parse ONNX model by TensorRT." << std::endl;
return false;
}
if (option_.serialize_file != "") {
std::ifstream fin(option_.serialize_file, std::ios::binary | std::ios::in);
if (fin) {
FDINFO << "Detect serialized TensorRT Engine file in "
<< option_.serialize_file << ", will load it directly."
<< std::endl;
fin.close();
// clear memory buffer of the temporary member
std::string().swap(onnx_model_buffer_);
return LoadTrtCache(option_.serialize_file);
}
}
if (!CanBuildEngine(shape_range_info_)) {
onnx_model_buffer_ = onnx_model_buffer;
FDWARNING << "Cannot build engine right now, because there's dynamic input "
"shape exists, list as below,"
<< std::endl;
for (int i = 0; i < NumInputs(); ++i) {
FDWARNING << "Input " << i << ": " << GetInputInfo(i) << std::endl;
}
FDWARNING
<< "FastDeploy will build the engine while inference with input data, "
"and will also collect the input shape range information. You "
"should be noticed that FastDeploy will rebuild the engine while "
"new input shape is out of the collected shape range, this may "
"bring some time consuming problem, refer "
"https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/faq/"
"tensorrt_tricks.md for more details."
<< std::endl;
initialized_ = true;
return true;
}
if (!BuildTrtEngine()) {
FDERROR << "Failed to build tensorrt engine." << std::endl;
}
// clear memory buffer of the temporary member
std::string().swap(onnx_model_buffer_);
return true;
}
TensorInfo TrtBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of inputs: %d.", index,
NumInputs());
TensorInfo info;
info.name = inputs_desc_[index].name;
info.shape.assign(inputs_desc_[index].shape.begin(),
inputs_desc_[index].shape.end());
info.dtype = inputs_desc_[index].original_dtype;
return info;
}
std::vector<TensorInfo> TrtBackend::GetInputInfos() {
std::vector<TensorInfo> infos;
for (auto i = 0; i < inputs_desc_.size(); i++) {
infos.emplace_back(GetInputInfo(i));
}
return infos;
}
TensorInfo TrtBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs: %d.", index,
NumOutputs());
TensorInfo info;
info.name = outputs_desc_[index].name;
info.shape.assign(outputs_desc_[index].shape.begin(),
outputs_desc_[index].shape.end());
info.dtype = outputs_desc_[index].original_dtype;
return info;
}
std::vector<TensorInfo> TrtBackend::GetOutputInfos() {
std::vector<TensorInfo> infos;
for (auto i = 0; i < outputs_desc_.size(); i++) {
infos.emplace_back(GetOutputInfo(i));
}
return infos;
}
} // namespace fastdeploy