mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
Add YOLOv5-cls Model (#335)
* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
|
||||
from .contrib.yolov5cls import YOLOv5Cls
|
||||
from .ppcls import PaddleClasModel
|
||||
|
||||
PPLCNet = PaddleClasModel
|
||||
|
15
python/fastdeploy/vision/classification/contrib/__init__.py
Normal file
15
python/fastdeploy/vision/classification/contrib/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
69
python/fastdeploy/vision/classification/contrib/yolov5cls.py
Normal file
69
python/fastdeploy/vision/classification/contrib/yolov5cls.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class YOLOv5Cls(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a image classification model exported by YOLOv5.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g yolov5cls/yolov5n-cls.onnx
|
||||
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
|
||||
"""
|
||||
|
||||
super(YOLOv5Cls, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.ONNX, "YOLOv5Cls only support model format of ModelFormat.ONNX now."
|
||||
self._model = C.vision.classification.YOLOv5Cls(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "YOLOv5Cls initialize failed."
|
||||
|
||||
def predict(self, input_image, topk=1):
|
||||
"""Classify an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param topk: (int)The topk result by the classify confidence score, default 1
|
||||
:return: ClassifyResult
|
||||
"""
|
||||
|
||||
return self._model.predict(input_image, topk)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Returns the preprocess image size
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
"""
|
||||
Set the preprocess image size
|
||||
"""
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
Reference in New Issue
Block a user