mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
Fix bug of get input/output information from PaddleBackend (#339)
* Fix bug of get input/output information from PaddleBackend * Support Paddle Inference with TensorRT (#340) * Fix bug
This commit is contained in:
@@ -69,7 +69,7 @@ else()
|
||||
else()
|
||||
set(PADDLEINFERENCE_FILE "paddle_inference-linux-x64-${PADDLEINFERENCE_VERSION}.tgz")
|
||||
if(WITH_GPU)
|
||||
set(PADDLEINFERENCE_FILE "paddle_inference-linux-x64-gpu-${PADDLEINFERENCE_VERSION}.tgz")
|
||||
set(PADDLEINFERENCE_FILE "paddle_inference-linux-x64-gpu-trt-${PADDLEINFERENCE_VERSION}.tgz")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
@@ -16,23 +16,43 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
void PaddleBackend::BuildOption(const PaddleBackendOption& option,
|
||||
const std::string& model_file) {
|
||||
void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
|
||||
if (option.use_gpu) {
|
||||
config_.EnableUseGpu(option.gpu_mem_init_size, option.gpu_id);
|
||||
if (option.enable_trt) {
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
auto precision = paddle_infer::PrecisionType::kFloat32;
|
||||
if (option.trt_option.enable_fp16) {
|
||||
precision = paddle_infer::PrecisionType::kHalf;
|
||||
}
|
||||
bool use_static = false;
|
||||
if (option.trt_option.serialize_file != "") {
|
||||
FDWARNING << "Detect that tensorrt cache file has been set to " << option.trt_option.serialize_file << ", but while enable paddle2trt, please notice that the cache file will save to the directory where paddle model saved." << std::endl;
|
||||
use_static = true;
|
||||
}
|
||||
config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, precision, use_static);
|
||||
std::map<std::string, std::vector<int>> max_shape;
|
||||
std::map<std::string, std::vector<int>> min_shape;
|
||||
std::map<std::string, std::vector<int>> opt_shape;
|
||||
for (const auto& item : option.trt_option.min_shape) {
|
||||
auto max_iter = option.trt_option.max_shape.find(item.first);
|
||||
auto opt_iter = option.trt_option.opt_shape.find(item.first);
|
||||
FDASSERT(max_iter != option.trt_option.max_shape.end(), "Cannot find %s in TrtBackendOption::min_shape.", item.first.c_str());
|
||||
FDASSERT(opt_iter != option.trt_option.opt_shape.end(), "Cannot find %s in TrtBackendOption::opt_shape.", item.first.c_str());
|
||||
max_shape[item.first].assign(max_iter->second.begin(), max_iter->second.end());
|
||||
opt_shape[item.first].assign(opt_iter->second.begin(), opt_iter->second.end());
|
||||
min_shape[item.first].assign(item.second.begin(), item.second.end());
|
||||
}
|
||||
if (min_shape.size() > 0) {
|
||||
config_.SetTRTDynamicShapeInfo(min_shape, max_shape, opt_shape);
|
||||
}
|
||||
#else
|
||||
FDWARNING << "The FastDeploy is not compiled with TensorRT backend, so will fallback to GPU with Paddle Inference Backend." << std::endl;
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
config_.DisableGpu();
|
||||
if (option.enable_mkldnn) {
|
||||
config_.EnableMKLDNN();
|
||||
std::string contents;
|
||||
if (!ReadBinaryFromFile(model_file, &contents)) {
|
||||
return;
|
||||
}
|
||||
auto reader =
|
||||
paddle2onnx::PaddleReader(contents.c_str(), contents.size());
|
||||
if (reader.is_quantize_model) {
|
||||
config_.EnableMkldnnInt8();
|
||||
}
|
||||
config_.SetMkldnnCacheCapacity(option.mkldnn_cache_size);
|
||||
}
|
||||
}
|
||||
@@ -62,28 +82,48 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_file,
|
||||
return false;
|
||||
}
|
||||
config_.SetModel(model_file, params_file);
|
||||
BuildOption(option, model_file);
|
||||
BuildOption(option);
|
||||
|
||||
// The input/output information get from predictor is not right, use PaddleReader instead now
|
||||
std::string contents;
|
||||
if (!ReadBinaryFromFile(model_file, &contents)) {
|
||||
return false;
|
||||
}
|
||||
auto reader =
|
||||
paddle2onnx::PaddleReader(contents.c_str(), contents.size());
|
||||
|
||||
// If it's a quantized model, and use cpu with mkldnn, automaticaly switch to int8 mode
|
||||
if (reader.is_quantize_model) {
|
||||
if (option.use_gpu) {
|
||||
FDWARNING << "The loaded model is a quantized model, while inference on GPU, please use TensorRT backend to get better performance." << std::endl;
|
||||
}
|
||||
if (option.enable_mkldnn) {
|
||||
config_.EnableMkldnnInt8();
|
||||
} else {
|
||||
FDWARNING << "The loaded model is a quantized model, while inference on CPU, please enable MKLDNN to get better performance." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
inputs_desc_.resize(reader.num_inputs);
|
||||
for (int i = 0; i < reader.num_inputs; ++i) {
|
||||
std::string name(reader.inputs[i].name);
|
||||
std::vector<int64_t> shape(
|
||||
reader.inputs[i].shape,
|
||||
reader.inputs[i].shape + reader.inputs[i].rank);
|
||||
inputs_desc_[i].name = name;
|
||||
inputs_desc_[i].shape.assign(shape.begin(), shape.end());
|
||||
inputs_desc_[i].dtype = ReaderDataTypeToFD(reader.inputs[i].dtype);
|
||||
}
|
||||
outputs_desc_.resize(reader.num_outputs);
|
||||
for (int i = 0; i < reader.num_outputs; ++i) {
|
||||
std::string name(reader.outputs[i].name);
|
||||
std::vector<int64_t> shape(reader.outputs[i].shape, reader.outputs[i].shape + reader.outputs[i].rank);
|
||||
outputs_desc_[i].name = name;
|
||||
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
|
||||
outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
|
||||
}
|
||||
|
||||
predictor_ = paddle_infer::CreatePredictor(config_);
|
||||
std::vector<std::string> input_names = predictor_->GetInputNames();
|
||||
std::vector<std::string> output_names = predictor_->GetOutputNames();
|
||||
for (size_t i = 0; i < input_names.size(); ++i) {
|
||||
auto handle = predictor_->GetInputHandle(input_names[i]);
|
||||
TensorInfo info;
|
||||
auto shape = handle->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.dtype = PaddleDataTypeToFD(handle->type());
|
||||
info.name = input_names[i];
|
||||
inputs_desc_.emplace_back(info);
|
||||
}
|
||||
for (size_t i = 0; i < output_names.size(); ++i) {
|
||||
auto handle = predictor_->GetOutputHandle(output_names[i]);
|
||||
TensorInfo info;
|
||||
auto shape = handle->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.dtype = PaddleDataTypeToFD(handle->type());
|
||||
info.name = output_names[i];
|
||||
outputs_desc_.emplace_back(info);
|
||||
}
|
||||
initialized_ = true;
|
||||
return true;
|
||||
}
|
||||
@@ -131,4 +171,4 @@ bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
||||
} // namespace fastdeploy
|
||||
|
@@ -20,9 +20,15 @@
|
||||
#include <vector>
|
||||
|
||||
#include "fastdeploy/backends/backend.h"
|
||||
#ifdef ENABLE_PADDLE_FRONTEND
|
||||
#include "paddle2onnx/converter.h"
|
||||
#endif
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
#include "fastdeploy/backends/tensorrt/trt_backend.h"
|
||||
#endif
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
struct PaddleBackendOption {
|
||||
@@ -35,6 +41,11 @@ struct PaddleBackendOption {
|
||||
|
||||
bool enable_log_info = false;
|
||||
|
||||
bool enable_trt = false;
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
TrtBackendOption trt_option;
|
||||
#endif
|
||||
|
||||
int mkldnn_cache_size = 1;
|
||||
int cpu_thread_num = 8;
|
||||
// initialize memory size(MB) for GPU
|
||||
@@ -58,18 +69,21 @@ void CopyTensorToCpu(std::unique_ptr<paddle_infer::Tensor>& tensor,
|
||||
// Convert data type from paddle inference to fastdeploy
|
||||
FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype);
|
||||
|
||||
// Convert data type from paddle2onnx::PaddleReader to fastdeploy
|
||||
FDDataType ReaderDataTypeToFD(int32_t dtype);
|
||||
|
||||
class PaddleBackend : public BaseBackend {
|
||||
public:
|
||||
PaddleBackend() {}
|
||||
virtual ~PaddleBackend() = default;
|
||||
void BuildOption(const PaddleBackendOption& option,
|
||||
const std::string& model_file);
|
||||
void BuildOption(const PaddleBackendOption& option);
|
||||
|
||||
bool InitFromPaddle(
|
||||
const std::string& model_file, const std::string& params_file,
|
||||
const PaddleBackendOption& option = PaddleBackendOption());
|
||||
|
||||
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs) override;
|
||||
bool Infer(std::vector<FDTensor>& inputs,
|
||||
std::vector<FDTensor>* outputs) override;
|
||||
|
||||
int NumInputs() const override { return inputs_desc_.size(); }
|
||||
|
||||
|
@@ -89,4 +89,26 @@ FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype) {
|
||||
return fd_dtype;
|
||||
}
|
||||
|
||||
FDDataType ReaderDataTypeToFD(int32_t dtype) {
|
||||
auto fd_dtype = FDDataType::FP32;
|
||||
if (dtype == 0) {
|
||||
fd_dtype = FDDataType::FP32;
|
||||
} else if (dtype == 1) {
|
||||
fd_dtype = FDDataType::FP64;
|
||||
} else if (dtype == 2) {
|
||||
fd_dtype = FDDataType::UINT8;
|
||||
} else if (dtype == 3) {
|
||||
fd_dtype = FDDataType::INT8;
|
||||
} else if (dtype == 4) {
|
||||
fd_dtype = FDDataType::INT32;
|
||||
} else if (dtype == 5) {
|
||||
fd_dtype = FDDataType::INT64;
|
||||
} else if (dtype == 6) {
|
||||
fd_dtype = FDDataType::FP16;
|
||||
} else {
|
||||
FDASSERT(false, "Unexpected data type: %d while call ReaderDataTypeToFD in PaddleBackend.", dtype);
|
||||
}
|
||||
return fd_dtype;
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
||||
|
@@ -39,6 +39,7 @@ void BindRuntime(pybind11::module& m) {
|
||||
.def("set_lite_power_mode", &RuntimeOption::SetLitePowerMode)
|
||||
.def("set_trt_input_shape", &RuntimeOption::SetTrtInputShape)
|
||||
.def("set_trt_max_workspace_size", &RuntimeOption::SetTrtMaxWorkspaceSize)
|
||||
.def("enable_paddle_to_trt", &RuntimeOption::EnablePaddleToTrt)
|
||||
.def("enable_trt_fp16", &RuntimeOption::EnableTrtFP16)
|
||||
.def("disable_trt_fp16", &RuntimeOption::DisableTrtFP16)
|
||||
.def("set_trt_cache_file", &RuntimeOption::SetTrtCacheFile)
|
||||
|
@@ -258,6 +258,17 @@ void RuntimeOption::EnablePaddleLogInfo() { pd_enable_log_info = true; }
|
||||
|
||||
void RuntimeOption::DisablePaddleLogInfo() { pd_enable_log_info = false; }
|
||||
|
||||
void RuntimeOption::EnablePaddleToTrt() {
|
||||
FDASSERT(backend == Backend::TRT, "Should call UseTrtBackend() before call EnablePaddleToTrt().");
|
||||
#ifdef ENABLE_PADDLE_BACKEND
|
||||
FDINFO << "While using TrtBackend with EnablePaddleToTrt, FastDeploy will change to use Paddle Inference Backend." << std::endl;
|
||||
backend = Backend::PDINFER;
|
||||
pd_enable_trt = true;
|
||||
#else
|
||||
FDASSERT(false, "While using TrtBackend with EnablePaddleToTrt, require the FastDeploy is compiled with Paddle Inference Backend, please rebuild your FastDeploy.");
|
||||
#endif
|
||||
}
|
||||
|
||||
void RuntimeOption::SetPaddleMKLDNNCacheSize(int size) {
|
||||
FDASSERT(size > 0, "Parameter size must greater than 0.");
|
||||
pd_mkldnn_cache_size = size;
|
||||
@@ -406,6 +417,21 @@ void Runtime::CreatePaddleBackend() {
|
||||
pd_option.gpu_id = option.device_id;
|
||||
pd_option.delete_pass_names = option.pd_delete_pass_names;
|
||||
pd_option.cpu_thread_num = option.cpu_thread_num;
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
if (pd_option.use_gpu && option.pd_enable_trt) {
|
||||
pd_option.enable_trt = true;
|
||||
auto trt_option = TrtBackendOption();
|
||||
trt_option.gpu_id = option.device_id;
|
||||
trt_option.enable_fp16 = option.trt_enable_fp16;
|
||||
trt_option.max_batch_size = option.trt_max_batch_size;
|
||||
trt_option.max_workspace_size = option.trt_max_workspace_size;
|
||||
trt_option.max_shape = option.trt_max_shape;
|
||||
trt_option.min_shape = option.trt_min_shape;
|
||||
trt_option.opt_shape = option.trt_opt_shape;
|
||||
trt_option.serialize_file = option.trt_serialize_file;
|
||||
pd_option.trt_option = trt_option;
|
||||
}
|
||||
#endif
|
||||
FDASSERT(option.model_format == ModelFormat::PADDLE,
|
||||
"PaddleBackend only support model format of ModelFormat::PADDLE.");
|
||||
backend_ = utils::make_unique<PaddleBackend>();
|
||||
|
@@ -126,6 +126,11 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
/// Set mkldnn switch while using Paddle Inference as inference backend
|
||||
void SetPaddleMKLDNN(bool pd_mkldnn = true);
|
||||
|
||||
/*
|
||||
* @brief If TensorRT backend is used, EnablePaddleToTrt will change to use Paddle Inference backend, and use its integrated TensorRT instead.
|
||||
*/
|
||||
void EnablePaddleToTrt();
|
||||
|
||||
/**
|
||||
* @brief Delete pass by name while using Paddle Inference as inference backend, this can be called multiple times to delete a set of passes
|
||||
*/
|
||||
@@ -214,6 +219,7 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
// ======Only for Paddle Backend=====
|
||||
bool pd_enable_mkldnn = true;
|
||||
bool pd_enable_log_info = false;
|
||||
bool pd_enable_trt = false;
|
||||
int pd_mkldnn_cache_size = 1;
|
||||
std::vector<std::string> pd_delete_pass_names;
|
||||
|
||||
|
@@ -217,6 +217,11 @@ class RuntimeOption:
|
||||
"""
|
||||
return self._option.disable_trt_fp16()
|
||||
|
||||
def enable_paddle_to_trt(self):
|
||||
"""While using TensorRT backend, enable_paddle_to_trt() will change to use Paddle Inference backend, and use its integrated TensorRT instead.
|
||||
"""
|
||||
return self._option.enable_paddle_to_trt()
|
||||
|
||||
def set_trt_max_workspace_size(self, trt_max_workspace_size):
|
||||
"""Set max workspace size while using TensorRT backend.
|
||||
"""
|
||||
|
Reference in New Issue
Block a user