mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test Co-authored-by: Jason <jiangjiajun@baidu.com>
70 lines
2.7 KiB
Python
70 lines
2.7 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
class YOLOv5Cls(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a image classification model exported by YOLOv5.
|
|
|
|
:param model_file: (str)Path of model file, e.g yolov5cls/yolov5n-cls.onnx
|
|
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
|
|
"""
|
|
|
|
super(YOLOv5Cls, self).__init__(runtime_option)
|
|
|
|
assert model_format == ModelFormat.ONNX, "YOLOv5Cls only support model format of ModelFormat.ONNX now."
|
|
self._model = C.vision.classification.YOLOv5Cls(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "YOLOv5Cls initialize failed."
|
|
|
|
def predict(self, input_image, topk=1):
|
|
"""Classify an input image
|
|
|
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param topk: (int)The topk result by the classify confidence score, default 1
|
|
:return: ClassifyResult
|
|
"""
|
|
|
|
return self._model.predict(input_image, topk)
|
|
|
|
@property
|
|
def size(self):
|
|
"""
|
|
Returns the preprocess image size
|
|
"""
|
|
return self._model.size
|
|
|
|
@size.setter
|
|
def size(self, wh):
|
|
"""
|
|
Set the preprocess image size
|
|
"""
|
|
assert isinstance(wh, (list, tuple)),\
|
|
"The value to set `size` must be type of tuple or list."
|
|
assert len(wh) == 2,\
|
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
len(wh))
|
|
self._model.size = wh
|