Files
FastDeploy/python/fastdeploy/vision/classification/contrib/yolov5cls.py
WJJ1995 b557dbc2d8 Add YOLOv5-cls Model (#335)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-12 15:57:26 +08:00

70 lines
2.7 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class YOLOv5Cls(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a image classification model exported by YOLOv5.
:param model_file: (str)Path of model file, e.g yolov5cls/yolov5n-cls.onnx
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
"""
super(YOLOv5Cls, self).__init__(runtime_option)
assert model_format == ModelFormat.ONNX, "YOLOv5Cls only support model format of ModelFormat.ONNX now."
self._model = C.vision.classification.YOLOv5Cls(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "YOLOv5Cls initialize failed."
def predict(self, input_image, topk=1):
"""Classify an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param topk: (int)The topk result by the classify confidence score, default 1
:return: ClassifyResult
"""
return self._model.predict(input_image, topk)
@property
def size(self):
"""
Returns the preprocess image size
"""
return self._model.size
@size.setter
def size(self, wh):
"""
Set the preprocess image size
"""
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh