mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
Add YOLOv5-cls Model (#335)
* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
116
fastdeploy/vision/classification/contrib/yolov5cls.cc
Executable file
116
fastdeploy/vision/classification/contrib/yolov5cls.cc
Executable file
@@ -0,0 +1,116 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/contrib/yolov5cls.h"
|
||||
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
YOLOv5Cls::YOLOv5Cls(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
}
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
runtime_option.params_file = params_file;
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Initialize() {
|
||||
// preprocess parameters
|
||||
size = {224, 224};
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Preprocess(Mat* mat, FDTensor* output,
|
||||
const std::vector<int>& size) {
|
||||
// CenterCrop
|
||||
int crop_size = std::min(mat->Height(), mat->Width());
|
||||
CenterCrop::Run(mat, crop_size, crop_size);
|
||||
Resize::Run(mat, size[0], size[1], -1, -1, cv::INTER_LINEAR);
|
||||
// Normalize
|
||||
BGR2RGB::Run(mat);
|
||||
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
||||
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
||||
Convert::Run(mat, alpha, beta);
|
||||
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
||||
Normalize::Run(mat, mean, std, false);
|
||||
HWC2CHW::Run(mat);
|
||||
Cast::Run(mat, "float");
|
||||
|
||||
mat->ShareWithTensor(output);
|
||||
output->shape.insert(output->shape.begin(), 1);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Postprocess(const FDTensor& infer_result,
|
||||
ClassifyResult* result, int topk) {
|
||||
// Softmax
|
||||
FDTensor infer_result_softmax;
|
||||
Softmax(infer_result, &infer_result_softmax, 1);
|
||||
int num_classes = infer_result_softmax.shape[1];
|
||||
const float* infer_result_buffer =
|
||||
reinterpret_cast<const float*>(infer_result_softmax.Data());
|
||||
topk = std::min(num_classes, topk);
|
||||
result->label_ids =
|
||||
utils::TopKIndices(infer_result_buffer, num_classes, topk);
|
||||
result->scores.resize(topk);
|
||||
for (int i = 0; i < topk; ++i) {
|
||||
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOv5Cls::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> input_tensors(1);
|
||||
if (!Preprocess(&mat, &input_tensors[0], size)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
std::vector<FDTensor> output_tensors(1);
|
||||
if (!Infer(input_tensors, &output_tensors)) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(output_tensors[0], result, topk)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user