Files
FastDeploy/fastdeploy/vision/classification/contrib/yolov5cls.cc
WJJ1995 b557dbc2d8 Add YOLOv5-cls Model (#335)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-12 15:57:26 +08:00

117 lines
3.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/contrib/yolov5cls.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace classification {
YOLOv5Cls::YOLOv5Cls(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv5Cls::Initialize() {
// preprocess parameters
size = {224, 224};
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool YOLOv5Cls::Preprocess(Mat* mat, FDTensor* output,
const std::vector<int>& size) {
// CenterCrop
int crop_size = std::min(mat->Height(), mat->Width());
CenterCrop::Run(mat, crop_size, crop_size);
Resize::Run(mat, size[0], size[1], -1, -1, cv::INTER_LINEAR);
// Normalize
BGR2RGB::Run(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
std::vector<float> std = {0.229f, 0.224f, 0.225f};
Normalize::Run(mat, mean, std, false);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
return true;
}
bool YOLOv5Cls::Postprocess(const FDTensor& infer_result,
ClassifyResult* result, int topk) {
// Softmax
FDTensor infer_result_softmax;
Softmax(infer_result, &infer_result_softmax, 1);
int num_classes = infer_result_softmax.shape[1];
const float* infer_result_buffer =
reinterpret_cast<const float*>(infer_result_softmax.Data());
topk = std::min(num_classes, topk);
result->label_ids =
utils::TopKIndices(infer_result_buffer, num_classes, topk);
result->scores.resize(topk);
for (int i = 0; i < topk; ++i) {
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
}
return true;
}
bool YOLOv5Cls::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
if (!Preprocess(&mat, &input_tensors[0], size)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors(1);
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], result, topk)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy