mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test Co-authored-by: Jason <jiangjiajun@baidu.com>
117 lines
3.9 KiB
C++
Executable File
117 lines
3.9 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/classification/contrib/yolov5cls.h"
|
|
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
YOLOv5Cls::YOLOv5Cls(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool YOLOv5Cls::Initialize() {
|
|
// preprocess parameters
|
|
size = {224, 224};
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool YOLOv5Cls::Preprocess(Mat* mat, FDTensor* output,
|
|
const std::vector<int>& size) {
|
|
// CenterCrop
|
|
int crop_size = std::min(mat->Height(), mat->Width());
|
|
CenterCrop::Run(mat, crop_size, crop_size);
|
|
Resize::Run(mat, size[0], size[1], -1, -1, cv::INTER_LINEAR);
|
|
// Normalize
|
|
BGR2RGB::Run(mat);
|
|
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
|
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
|
Convert::Run(mat, alpha, beta);
|
|
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
|
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
|
Normalize::Run(mat, mean, std, false);
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
return true;
|
|
}
|
|
|
|
bool YOLOv5Cls::Postprocess(const FDTensor& infer_result,
|
|
ClassifyResult* result, int topk) {
|
|
// Softmax
|
|
FDTensor infer_result_softmax;
|
|
Softmax(infer_result, &infer_result_softmax, 1);
|
|
int num_classes = infer_result_softmax.shape[1];
|
|
const float* infer_result_buffer =
|
|
reinterpret_cast<const float*>(infer_result_softmax.Data());
|
|
topk = std::min(num_classes, topk);
|
|
result->label_ids =
|
|
utils::TopKIndices(infer_result_buffer, num_classes, topk);
|
|
result->scores.resize(topk);
|
|
for (int i = 0; i < topk; ++i) {
|
|
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool YOLOv5Cls::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
if (!Preprocess(&mat, &input_tensors[0], size)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors(1);
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(output_tensors[0], result, topk)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|