mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Model] add detection model : FastestDet (#842)
* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
This commit is contained in:
@@ -19,6 +19,7 @@ from .contrib.scaled_yolov4 import ScaledYOLOv4
|
||||
from .contrib.nanodet_plus import NanoDetPlus
|
||||
from .contrib.yolox import YOLOX
|
||||
from .contrib.yolov5 import *
|
||||
from .contrib.fastestdet import *
|
||||
from .contrib.yolov5lite import YOLOv5Lite
|
||||
from .contrib.yolov6 import YOLOv6
|
||||
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT
|
||||
|
149
python/fastdeploy/vision/detection/contrib/fastestdet.py
Normal file
149
python/fastdeploy/vision/detection/contrib/fastestdet.py
Normal file
@@ -0,0 +1,149 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class FastestDetPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for FastestDet
|
||||
"""
|
||||
self._preprocessor = C.vision.detection.FastestDetPreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for FastestDet
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [352, 352]
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._preprocessor.size = wh
|
||||
|
||||
|
||||
class FastestDetPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for FastestDet
|
||||
"""
|
||||
self._postprocessor = C.vision.detection.FastestDetPostprocessor()
|
||||
|
||||
def run(self, runtime_results, ims_info):
|
||||
"""Postprocess the runtime results for FastestDet
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:param: ims_info: (list of dict)Record input_shape and output_shape
|
||||
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results, ims_info)
|
||||
|
||||
@property
|
||||
def conf_threshold(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.65
|
||||
"""
|
||||
return self._postprocessor.conf_threshold
|
||||
|
||||
@property
|
||||
def nms_threshold(self):
|
||||
"""
|
||||
nms threshold for postprocessing, default is 0.45
|
||||
"""
|
||||
return self._postprocessor.nms_threshold
|
||||
|
||||
@conf_threshold.setter
|
||||
def conf_threshold(self, conf_threshold):
|
||||
assert isinstance(conf_threshold, float),\
|
||||
"The value to set `conf_threshold` must be type of float."
|
||||
self._postprocessor.conf_threshold = conf_threshold
|
||||
|
||||
@nms_threshold.setter
|
||||
def nms_threshold(self, nms_threshold):
|
||||
assert isinstance(nms_threshold, float),\
|
||||
"The value to set `nms_threshold` must be type of float."
|
||||
self._postprocessor.nms_threshold = nms_threshold
|
||||
|
||||
|
||||
class FastestDet(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a FastestDet model exported by FastestDet.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./FastestDet.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(FastestDet, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.ONNX, "FastestDet only support model format of ModelFormat.ONNX now."
|
||||
self._model = C.vision.detection.FastestDet(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
|
||||
assert self.initialized, "FastestDet initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
"""Detect an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
assert input_image is not None, "Input image is None."
|
||||
return self._model.predict(input_image)
|
||||
|
||||
def batch_predict(self, images):
|
||||
assert len(images) == 1,"FastestDet is only support 1 image in batch_predict"
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get FastestDetPreprocessor object of the loaded model
|
||||
|
||||
:return FastestDetPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get FastestDetPostprocessor object of the loaded model
|
||||
|
||||
:return FastestDetPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
Reference in New Issue
Block a user