[Features] add audio request & fix embedding bug (#5201)

* [Features] add audio request & fix embedding bug

* fix bug
This commit is contained in:
ming1753
2025-12-01 11:12:17 +08:00
committed by GitHub
parent 9f4977eb74
commit 70ec1e17c1
2 changed files with 46 additions and 14 deletions

View File

@@ -27,27 +27,43 @@ from fastdeploy.utils import data_processor_logger
class BaseEncodeRequest(BaseModel):
version: str
req_id: str
is_gen: bool
resolution: int
class ImageEncodeRequest(BaseEncodeRequest):
image_url: Union[str, HttpUrl]
is_gen: bool
resolution: int
class VideoEncodeRequest(BaseEncodeRequest):
video_url: Union[str, HttpUrl]
is_gen: bool
resolution: int
start_ts: int
end_ts: int
frames: int
vit_merge: bool
class AudioEncodeRequest(BaseEncodeRequest):
audio_url: Union[str, HttpUrl]
is_add_spk_emb: bool
is_pad_aug: bool
is_aug: bool
audio_start: Optional[float]
audio_dur: Optional[float]
class ImageDecodeRequest(BaseModel):
req_id: str
data: list[Any]
class AudioDecodeRequest(BaseModel):
req_id: str
data: list[Any]
class AsyncTokenizerClient:
def __init__(
self,
@@ -74,9 +90,15 @@ class AsyncTokenizerClient:
async def encode_video(self, request: VideoEncodeRequest):
return await self._async_encode_request("video", request.__dict__)
async def encode_audio(self, request: AudioEncodeRequest):
return await self._async_encode_request("audio", request.__dict__)
async def decode_image(self, request: ImageDecodeRequest):
return await self._async_decode_request("image", request.__dict__)
async def decode_audio(self, request: AudioDecodeRequest):
return await self._async_decode_request("audio", request.__dict__)
async def log_request(self, request):
data_processor_logger.debug(f">>> Request: {request.method} {request.url}")
data_processor_logger.debug(f">>> Headers: {request.headers}")
@@ -101,6 +123,8 @@ class AsyncTokenizerClient:
url = f"{self.base_url}/image/encode"
elif type == "video":
url = f"{self.base_url}/video/encode"
elif type == "audio":
url = f"{self.base_url}/audio/encode"
else:
raise ValueError("Invalid type")
@@ -110,6 +134,7 @@ class AsyncTokenizerClient:
raise RuntimeError(f"Failed to create tokenize task: {e}") from e
task_info = resp.json()
if task_info.get("code") != 0:
raise RuntimeError(f"Tokenize task creation failed, {task_info.get('message')}")
@@ -154,6 +179,8 @@ class AsyncTokenizerClient:
url = None
if type == "image":
url = f"{self.base_url}/image/decode"
elif type == "audio":
url = f"{self.base_url}/audio/decode"
else:
raise ValueError("Invalid type")

View File

@@ -106,6 +106,8 @@ class VocabParallelEmbedding(nn.Layer):
params_dtype: str = "bfloat16",
prefix="",
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
org_num_embeddings: int | None = None,
general=False,
) -> None:
"""
Initialize the VocabParallelEmbedding layer for the model.
@@ -132,17 +134,23 @@ class VocabParallelEmbedding(nn.Layer):
self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
self.params_dtype: str = params_dtype
self.padding_size = padding_size
self.org_vocab_size = num_embeddings
self.general = general # used for general Embedding
self.num_embeddings = num_embeddings
num_added_embeddings = num_embeddings - self.org_vocab_size
self.padding_size = padding_size
if self.general:
self.org_vocab_size = num_embeddings
self.num_embeddings_padded = num_embeddings
self.org_vocab_size_padded = num_embeddings
else:
self.org_vocab_size = org_num_embeddings or num_embeddings
num_added_embeddings = num_embeddings - self.org_vocab_size
self.org_vocab_size_padded = pad_vocab_size(self.org_vocab_size, self.padding_size)
self.num_embeddings_padded = pad_vocab_size(
self.org_vocab_size_padded + num_added_embeddings, self.padding_size
)
assert self.org_vocab_size_padded <= self.num_embeddings_padded
self.org_vocab_size_padded = pad_vocab_size(self.org_vocab_size, self.padding_size)
self.num_embeddings_padded = pad_vocab_size(
self.org_vocab_size_padded + num_added_embeddings, self.padding_size
)
assert self.org_vocab_size_padded <= self.num_embeddings_padded
self.shard_indices = self._get_indices(
self.num_embeddings_padded,
self.org_vocab_size_padded,
@@ -152,9 +160,6 @@ class VocabParallelEmbedding(nn.Layer):
self.world_size,
)
if num_embeddings % self.world_size != 0:
self.num_embeddings_padded = pad_vocab_size(num_embeddings, self.padding_size)
if not self.column_cut:
self.embeddings = fleet.meta_parallel.VocabParallelEmbedding(
self.num_embeddings_padded,
@@ -188,7 +193,7 @@ class VocabParallelEmbedding(nn.Layer):
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
if self.tie_word_embeddings:
if self.tie_word_embeddings and not self.general:
weight_tensor = get_tensor(state_dict[self.prefix + ".weight"]).astype(paddle.get_default_dtype())
else:
weight_tensor = get_tensor(state_dict.pop(self.prefix + ".weight")).astype(paddle.get_default_dtype())