[xpu] support mtp for xpu(mix) (#5274)

* [XPU] support kernel for mtp(base)

* [XPU] support kernel for mtp(base)

* format

* format

* format

* fix gather next token

* fix step && add test

* fix

* mv pre/post process

* add adjust batch / gather next token for mtp

* fix code style

* fix mtp kenrel name

* fix mtp kernel test

* mv xpu pre/post process

* mv xpu pre/post process

* [xpu] support mtp

* fix code style
This commit is contained in:
cmcamdy
2025-12-01 11:03:14 +08:00
committed by GitHub
parent 8aec3acc8c
commit 9f4977eb74
8 changed files with 691 additions and 106 deletions

View File

@@ -182,24 +182,28 @@ def apply_speculative_penalty_multi_scores(
from fastdeploy.model_executor.ops.gpu import (
speculate_get_token_penalty_multi_scores,
)
speculate_get_token_penalty_multi_scores(
pre_token_ids,
logits,
repetition_penalties,
frequency_penalties,
presence_penalties,
temperature,
bad_words_token_ids,
step_idx,
min_dec_lens,
eos_token_ids,
seq_lens_this_time,
output_padding_offset,
output_cum_offsets,
max_len,
elif current_platform.is_xpu():
from fastdeploy.model_executor.ops.xpu import (
speculate_get_token_penalty_multi_scores,
)
else:
raise NotImplementedError
speculate_get_token_penalty_multi_scores(
pre_token_ids,
logits,
repetition_penalties,
frequency_penalties,
presence_penalties,
temperature,
bad_words_token_ids,
step_idx,
min_dec_lens,
eos_token_ids,
seq_lens_this_time,
output_padding_offset,
output_cum_offsets,
max_len,
)
# inplace
return logits

View File

@@ -572,6 +572,8 @@ class SpeculativeSampler(nn.Layer):
super().__init__()
if current_platform.is_cuda():
self.forward = self.forward_cuda
elif current_platform.is_xpu():
self.forward = self.forward_xpu
else:
raise NotImplementedError
self.logprobs_mode = fd_config.model_config.logprobs_mode
@@ -814,6 +816,80 @@ class SpeculativeSampler(nn.Layer):
return sampler_output
def forward_xpu(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
max_model_len: int,
share_inputs: List[paddle.Tensor],
accept_all_drafts: bool = False,
reject_all_drafts: bool = False,
) -> paddle.Tensor:
from fastdeploy.model_executor.ops.xpu import speculate_verify, top_p_candidates
logits = apply_speculative_penalty_multi_scores(
sampling_metadata.pre_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
share_inputs["seq_lens_this_time"],
share_inputs["output_padding_offset"],
share_inputs["output_cum_offsets"],
max_model_len,
)
probs = F.softmax(logits)
verify_scores, verify_tokens, actual_candidate_len = top_p_candidates(
probs,
sampling_metadata.top_p,
share_inputs["output_padding_offset"],
self.speculative_max_candidate_len,
max_model_len,
)
speculate_verify(
share_inputs["accept_tokens"],
share_inputs["accept_num"],
share_inputs["step_idx"],
share_inputs["stop_flags"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs[
"draft_tokens"
], # Both input and output, need to write the last 1 token accepted to position 0.
share_inputs["seq_lens_this_time"],
verify_tokens,
verify_scores,
share_inputs["max_dec_len"],
sampling_metadata.eos_token_ids,
share_inputs["is_block_step"],
share_inputs["output_cum_offsets"],
actual_candidate_len,
share_inputs["actual_draft_token_num"],
sampling_metadata.top_p,
max_model_len,
self.speculative_verify_window,
True, # enable_topp
(self.speculative_benchmark_mode or reject_all_drafts),
accept_all_drafts,
)
# TODO(chenhuan09): support return logprobs
token_ids = share_inputs["accept_tokens"]
sampler_output = SamplerOutput(
sampled_token_ids=token_ids,
logprobs_tensors=None,
token_num_per_batch=share_inputs["accept_num"],
cu_batch_token_offset=None,
)
return sampler_output
class MTPSampler(nn.Layer):
""" """
@@ -823,6 +899,8 @@ class MTPSampler(nn.Layer):
super().__init__()
if current_platform.is_cuda():
self.forward = self.forward_cuda
elif current_platform.is_xpu():
self.forward = self.forward_xpu
else:
raise NotImplementedError
self.logprobs_mode = fd_config.model_config.logprobs_mode
@@ -1013,3 +1091,44 @@ class MTPSampler(nn.Layer):
cu_batch_token_offset=share_inputs["cu_batch_token_offset"],
)
return next_tokens, sampler_output
def forward_xpu(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
max_model_len: int,
share_inputs: List[paddle.Tensor],
) -> paddle.Tensor:
logits = apply_speculative_penalty_multi_scores(
sampling_metadata.pre_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
share_inputs["seq_lens_this_time"],
share_inputs["output_padding_offset"],
share_inputs["output_cum_offsets"],
max_model_len,
)
probs = F.softmax(logits)
_, next_tokens = top_k_top_p_sampling(
probs, sampling_metadata.top_p, sampling_metadata.top_k, sampling_metadata.top_k_list
)
# TODO(chenhuan09): add support for logprobs
token_ids = None
logprobs_tensors = None
sampler_output = SamplerOutput(
sampled_token_ids=token_ids,
logprobs_tensors=logprobs_tensors,
token_num_per_batch=None,
cu_batch_token_offset=None,
)
return next_tokens, sampler_output

View File

@@ -31,6 +31,18 @@ if current_platform.is_xpu():
get_padding_offset,
limit_thinking_content_length_v1,
limit_thinking_content_length_v2,
save_output,
set_stop_value_multi_ends,
speculate_clear_accept_nums,
speculate_get_output_padding_offset,
speculate_get_padding_offset,
speculate_get_seq_lens_output,
speculate_save_output,
speculate_set_value_by_flags_and_idx,
speculate_step_paddle,
speculate_update_v3,
step_paddle,
update_inputs,
update_inputs_v1,
)
@@ -45,19 +57,53 @@ def xpu_pre_process(
seq_lens_encoder: Optional[paddle.Tensor] = None,
seq_lens_decoder: Optional[paddle.Tensor] = None,
is_profiling: bool = False,
forward_meta=None,
) -> XPUForwardMeta:
""" """
max_len = input_ids.shape[1]
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time, dtype="int32")
token_num = paddle.sum(seq_lens_this_time)
(
ids_remove_padding,
cum_offsets,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num, seq_lens_this_time)
if use_speculate_method:
(
ids_remove_padding,
cum_offsets,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
) = speculate_get_padding_offset(
input_ids,
draft_tokens,
cum_offsets_now,
token_num,
seq_lens_this_time,
seq_lens_encoder,
)
seq_lens_output = speculate_get_seq_lens_output(
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
)
if isinstance(seq_lens_output, list):
seq_lens_output = seq_lens_output[0]
output_token_num = paddle.sum(seq_lens_output)
output_cum_offsets_tmp = paddle.cumsum(max_len - seq_lens_output, dtype="int32")
output_padding_offset, output_cum_offsets = speculate_get_output_padding_offset(
output_cum_offsets_tmp,
output_token_num,
seq_lens_output,
max_len,
)
share_inputs["output_cum_offsets"].copy_(output_cum_offsets, False)
share_inputs["output_padding_offset"].copy_(output_padding_offset, False)
else:
(
ids_remove_padding,
cum_offsets,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num, seq_lens_this_time)
share_inputs["ids_remove_padding"] = None # set this after adjust batch
share_inputs["cum_offsets"] = cum_offsets
@@ -173,11 +219,6 @@ def xpu_post_process_normal(
line_break_id: int = None,
) -> None:
""" """
from fastdeploy.model_executor.ops.xpu import (
save_output,
set_stop_value_multi_ends,
update_inputs,
)
if think_end_id > 0:
limit_strategy = envs.FD_LIMIT_THINKING_CONTENT_TRUNCATE_STR
@@ -277,39 +318,110 @@ def xpu_post_process_normal(
)
def xpu_post_process_specualate(
model_output: ModelOutputData, save_each_rank: bool = False, skip_save_output: bool = False
):
""""""
speculate_update_v3(
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.not_need_stop,
model_output.draft_tokens,
model_output.actual_draft_token_num,
model_output.accept_tokens,
model_output.accept_num,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.is_block_step,
model_output.stop_nums,
)
if not skip_save_output:
speculate_save_output(
model_output.accept_tokens,
model_output.accept_num,
model_output.not_need_stop,
model_output.mp_rank,
save_each_rank, # False
)
speculate_clear_accept_nums(model_output.accept_num, model_output.seq_lens_decoder)
# Update pre_ids through accept tokens
speculate_set_value_by_flags_and_idx(
model_output.pre_ids,
model_output.accept_tokens,
model_output.accept_num,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.step_idx,
)
def step_xpu(
share_inputs: Dict[str, paddle.Tensor],
block_size: int,
enc_dec_block_num: int,
speculative_decoding: bool,
max_draft_token_num: int,
) -> None:
"""
TODO(gongshaotian): normalization name
TODO(chenhuan09): support PD
"""
from fastdeploy.model_executor.ops.xpu import step_paddle
step_paddle(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)
if speculative_decoding:
speculate_step_paddle(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
share_inputs["accept_num"],
block_size,
enc_dec_block_num,
max_draft_token_num,
)
else:
step_paddle(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)

View File

@@ -340,7 +340,11 @@ class TokenProcessor:
"""
if current_platform.is_xpu():
from fastdeploy.model_executor.ops.xpu import get_output, get_output_ep
from fastdeploy.model_executor.ops.xpu import (
get_output,
get_output_ep,
speculate_get_output,
)
elif current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import get_output
elif current_platform.is_gcu():

View File

@@ -14,9 +14,12 @@
"""
speculative decoding module
"""
from fastdeploy.platforms import current_platform
from .base import Proposer
from .mtp import MTPProposer
from .ngram import NgramProposer
# XPU is not support ngram proposer now
if not current_platform.is_xpu():
from .ngram import NgramProposer
__all__ = ["Proposer", "MTPProposer", "NgramProposer"]

View File

@@ -34,21 +34,39 @@ from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import MTPSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.models import ModelForCasualLM
from fastdeploy.model_executor.ops.gpu import (
draft_model_postprocess,
draft_model_preprocess,
draft_model_update,
eagle_get_hidden_states,
eagle_get_self_hidden_states,
hybrid_mtp_ngram,
mtp_save_first_token,
mtp_step_paddle,
share_external_data,
speculate_get_logits,
speculate_save_output_topk,
update_attn_mask_offsets,
)
from fastdeploy.model_executor.pre_and_post_process import pre_process, rebuild_padding
from fastdeploy.platforms import current_platform
if current_platform.is_xpu():
from fastdeploy.model_executor.ops.xpu import (
draft_model_postprocess,
draft_model_preprocess,
draft_model_update,
eagle_get_hidden_states,
eagle_get_self_hidden_states,
mtp_save_first_token,
mtp_step_paddle,
share_external_data,
)
from fastdeploy.model_executor.xpu_pre_and_post_process import (
xpu_pre_process,
xpu_process_output,
)
else:
from fastdeploy.model_executor.ops.gpu import (
draft_model_postprocess,
draft_model_preprocess,
draft_model_update,
eagle_get_hidden_states,
eagle_get_self_hidden_states,
hybrid_mtp_ngram,
mtp_save_first_token,
mtp_step_paddle,
share_external_data,
speculate_get_logits,
speculate_save_output_topk,
update_attn_mask_offsets,
)
from fastdeploy.model_executor.pre_and_post_process import pre_process, rebuild_padding
from .base import Proposer
@@ -79,6 +97,15 @@ class MTPProposer(Proposer):
# [mixed, prefill, decoder]
self.role = self.scheduler_config.splitwise_role
if current_platform.is_xpu():
self.role = "mixed"
if current_platform.is_xpu():
self._propose = self._propose_xpu
elif current_platform.is_cuda():
self._propose = self._propose_cuda
else:
raise RuntimeError("Unsupported platform.")
self.sampler = MTPSampler(fd_config)
self._init_model_inputs()
@@ -92,7 +119,7 @@ class MTPProposer(Proposer):
self._initialize_attn_backend()
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
self.forward_meta = None
def _update_mtp_config(self, main_model):
"""
@@ -166,7 +193,7 @@ class MTPProposer(Proposer):
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_type = "uint8"
cache_type = self._get_cache_type()
kv_cache_quant_type = self.quant_config.kv_cache_quant_type
# Get kv cache shape
@@ -220,7 +247,7 @@ class MTPProposer(Proposer):
self.model_inputs["caches"] = list(self.cache_kvs.values())
for value in self.cache_kvs.values():
del value
paddle.device.cuda.empty_cache()
self._empty_cache()
def _initialize_attn_backend(
self,
@@ -245,9 +272,14 @@ class MTPProposer(Proposer):
self.model_inputs["decoder_tile_ids_per_batch"] = paddle.zeros_like(
self.target_model_inputs["decoder_tile_ids_per_batch"]
)
self.model_inputs["decoder_num_blocks_cpu"] = paddle.zeros_like(
self.target_model_inputs["decoder_num_blocks_cpu"]
).pin_memory()
if current_platform.is_xpu():
self.model_inputs["decoder_num_blocks_cpu"] = paddle.zeros_like(
self.target_model_inputs["decoder_num_blocks_cpu"]
).cpu()
else:
self.model_inputs["decoder_num_blocks_cpu"] = paddle.zeros_like(
self.target_model_inputs["decoder_num_blocks_cpu"]
).pin_memory()
self.model_inputs["decoder_num_blocks_device"] = paddle.zeros_like(
self.target_model_inputs["decoder_num_blocks_device"]
)
@@ -669,6 +701,36 @@ class MTPProposer(Proposer):
self.forward_meta.step_use_cudagraph = step_use_cudagraph and self.draft_model_use_cudagraph
def _initialize_forward_meta_xpu(self):
self.forward_meta.decoder_batch_ids = (self.model_inputs["decoder_batch_ids"],)
self.forward_meta.decoder_tile_ids_per_batch = (self.model_inputs["decoder_tile_ids_per_batch"],)
self.forward_meta.decoder_num_blocks_cpu = (self.model_inputs["decoder_num_blocks_cpu"],)
self.forward_meta.decoder_num_blocks_device = (self.model_inputs["decoder_num_blocks_device"],)
self.forward_meta.decoder_chunk_size_device = (self.model_inputs["decoder_chunk_size_device"],)
self.forward_meta.max_len_tensor_cpu = (self.model_inputs["max_len_tensor_cpu"],)
self.forward_meta.encoder_batch_ids = (self.model_inputs["encoder_batch_ids"],)
self.forward_meta.encoder_tile_ids_per_batch = (self.model_inputs["encoder_tile_ids_per_batch"],)
self.forward_meta.encoder_num_blocks_x_cpu = (self.model_inputs["encoder_num_blocks_x_cpu"],)
self.forward_meta.kv_batch_ids = (self.model_inputs["kv_batch_ids"],)
self.forward_meta.kv_tile_ids_per_batch = (self.model_inputs["kv_tile_ids_per_batch"],)
self.forward_meta.kv_num_blocks_x_cpu = (self.model_inputs["kv_num_blocks_x_cpu"],)
self.forward_meta.pos_emb_type = "NORMAL"
self.forward_meta.attn_backend = self.attn_backends[0]
# Initialzie attention meta data
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
# Mix ep in single node
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
only_decode_batch_list = []
prefill_exists = self.exist_prefill()
paddle.distributed.all_gather_object(only_decode_batch_list, not prefill_exists)
only_decode_batch = all(only_decode_batch_list)
self.fd_config.model_config.moe_phase.phase = "decode" if only_decode_batch else "prefill"
def exist_prefill(self):
"""
check whether prefill stage exist
@@ -682,7 +744,7 @@ class MTPProposer(Proposer):
"""
Prepare MTP inputs
"""
use_v1_cache_scheduler = envs.ENABLE_V1_KVCACHE_SCHEDULER
use_v1_cache_scheduler = bool(envs.ENABLE_V1_KVCACHE_SCHEDULER)
draft_model_preprocess(
self.model_inputs["draft_tokens"],
self.model_inputs["input_ids"],
@@ -767,7 +829,7 @@ class MTPProposer(Proposer):
self.model_inputs["step_idx"],
)
def _propose(self, step_use_cudagraph: bool = False, is_dummy_run: bool = False):
def _propose_cuda(self, step_use_cudagraph: bool = False, is_dummy_run: bool = False):
"""
Main process for MTP inference.
Args:
@@ -928,6 +990,96 @@ class MTPProposer(Proposer):
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward()
def _propose_xpu(self, step_use_cudagraph: bool = False, is_dummy_run: bool = False):
"""
Main process for MTP inference.
Args:
step_use_cudagraph: bool
Whether to use cuda graph. Use the target model flag to avoid hanging problems with EP.
"""
for substep in range(self.num_model_steps):
if self.model_inputs["not_need_stop"]:
self.model_inputs["substep"] = substep
# Remove padding
self.forward_meta = xpu_pre_process(
self.model_inputs["input_ids"],
self.model_inputs["seq_lens_this_time"],
self.model_inputs,
True,
self.cache_config.block_size,
self.model_inputs["draft_tokens"],
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
)
self._initialize_forward_meta_xpu()
# Get sampling metadata
self.sampling_metadata = SamplingMetadata(
temperature=self.model_inputs["temperature"],
top_p=self.model_inputs["top_p"],
top_k=self.model_inputs["top_k"],
seed=self.model_inputs["infer_seed"],
step_idx=self.model_inputs["step_idx"],
pre_token_ids=self.model_inputs["pre_ids"],
frequency_penalties=self.model_inputs["frequency_score"],
presence_penalties=self.model_inputs["presence_score"],
repetition_penalties=self.model_inputs["penalty_score"],
min_dec_lens=self.model_inputs["min_dec_len"],
bad_words_token_ids=self.model_inputs["bad_tokens"],
eos_token_ids=self.model_inputs["eos_token_id"],
max_num_logprobs=20 if self.enable_logprob else None,
temp_scaled_logprobs=self.model_inputs["temp_scaled_logprobs"],
top_p_normalized_logprobs=self.model_inputs["top_p_normalized_logprobs"],
share_inputs=self.model_inputs,
)
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.clone(self.model_inputs["seq_lens_this_time"])
model_output = self.model(
ids_remove_padding=self.model_inputs["ids_remove_padding"],
previous_hidden_states=self.model_inputs["target_hidden_states"],
forward_meta=self.forward_meta,
)
hidden_states = xpu_process_output(
model_output, self.model_inputs["cum_offsets"], self.forward_meta, self.model_inputs
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hidden_states)
sampled_token_ids, sampler_output = self.sampler(
logits,
self.sampling_metadata,
self.max_model_len,
self.model_inputs,
)
if substep == 0 and sampler_output.logprobs_tensors is not None:
real_bsz = self.model_inputs["seq_lens_this_time"].shape[0]
speculate_save_output_topk(
sampler_output.sampled_token_ids,
sampler_output.logprobs_tensors.logprob_token_ids,
sampler_output.logprobs_tensors.logprobs,
sampler_output.logprobs_tensors.selected_token_ranks,
self.model_inputs["batch_token_num"][:real_bsz],
self.model_inputs["cu_batch_token_offset"][:real_bsz],
self.model_inputs["not_need_stop"],
4, # mtype
self.local_rank,
)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(
sampled_token_ids,
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
self._post_process(sampled_token_ids)
if substep != self.num_model_steps - 1:
self._get_self_hidden_states(hidden_states)
else:
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward()
def _get_self_hidden_states(self, hidden_states):
target_hidden_states = eagle_get_self_hidden_states(
hidden_states,
@@ -1044,3 +1196,21 @@ class MTPProposer(Proposer):
self.forward_meta.seq_lens_this_time = self.seq_lens_this_time_buffer
self.real_token_num = self.forward_meta.ids_remove_padding.shape[0]
return
def _empty_cache(self):
if current_platform.is_cuda():
paddle.device.cuda.empty_cache()
elif current_platform.is_xpu():
paddle.device.xpu.empty_cache()
else:
raise NotImplementedError
def _get_cache_type(self):
cache_type = None
if current_platform.is_cuda():
cache_type = "uint8"
elif current_platform.is_xpu():
cache_type = "int8"
else:
raise NotImplementedError
return cache_type

View File

@@ -39,7 +39,7 @@ from fastdeploy.model_executor.layers.attention.base_attention_backend import (
)
from fastdeploy.model_executor.layers.rotary_embedding import get_rope, get_rope_3d
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler
from fastdeploy.model_executor.layers.sample.sampler import Sampler, SpeculativeSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import ScatterOp
from fastdeploy.model_executor.ops.xpu import (
@@ -49,12 +49,14 @@ from fastdeploy.model_executor.ops.xpu import (
set_data_ipc,
share_external_data,
)
from fastdeploy.model_executor.xpu_pre_and_post_process import ( # xpu_post_process_specualate, # TODO(chenhuan09): add xpu_post_process_specualate
from fastdeploy.model_executor.xpu_pre_and_post_process import (
step_xpu,
xpu_post_process_normal,
xpu_post_process_specualate,
xpu_pre_process,
xpu_process_output,
)
from fastdeploy.spec_decode import MTPProposer
from fastdeploy.utils import get_logger
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
@@ -102,9 +104,20 @@ class XPUModelRunner(ModelRunnerBase):
"fused_gemm_epilogue",
]
self.device_id = device_id
self.speculative_method = self.fd_config.speculative_config.method
self.speculative_decoding = self.speculative_method is not None
# used by SamplingMetadata
self.enable_logprob = False # fd_config.model_config.enable_logprob
self.enable_early_stop = self.fd_config.early_stop_config.enable_early_stop
# Sampler
# TODU(lilujia): sync with GPU
self.sampler = Sampler(fd_config)
if not self.speculative_decoding:
self.sampler = Sampler(fd_config)
else:
self.sampler = SpeculativeSampler(fd_config)
# Lazy initialize kv cache after model loading
# self.kv_caches: list[paddle.Tensor] = []
@@ -143,7 +156,7 @@ class XPUModelRunner(ModelRunnerBase):
else:
return 0
def insert_tasks_v1(self, req_dicts: List[Request]):
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
req_dict: A list of Request dict
@@ -340,7 +353,10 @@ class XPUModelRunner(ModelRunnerBase):
if has_prefill_task or has_decode_task:
self.share_inputs["not_need_stop"][0] = True
def insert_prefill_inputs(self, req_dicts: List[Request]):
if self.speculative_method in ["mtp"]:
self.proposer.insert_tasks_v1(req_dicts, num_running_requests)
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int):
"""Process inputs for prefill tasks and update share_inputs buffer"""
# NOTE(luotingdan): Set environment variable of prefill node
if req_dicts[-1].disaggregate_info is not None and req_dicts[-1].disaggregate_info["role"] == "prefill":
@@ -480,6 +496,15 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["not_need_stop"][0] = True
if self.speculative_method in ["mtp"]:
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "temp_scaled_logprobs", False
)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "top_p_normalized_logprobs", False
)
self.proposer.insert_prefill_inputs(req_dicts, num_running_requests)
def _init_share_inputs(self, max_num_seqs: int):
"""Initialize all share buffers for model inputs.
Note: In the future, we may abandon share buffers.
@@ -558,6 +583,15 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int32")
self.share_inputs["ids_remove_padding"] = paddle.full(
[max_num_seqs * self.model_config.max_model_len],
0,
dtype="int64",
)
self.share_inputs["batch_id_per_token"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
# Initialize thinking related buffers
self.share_inputs["max_think_lens"] = paddle.full(shape=[max_num_seqs, 1], fill_value=-1, dtype="int32")
self.share_inputs["limit_think_status"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
@@ -629,6 +663,56 @@ class XPUModelRunner(ModelRunnerBase):
)
self.share_inputs["image_features"] = None
if self.speculative_decoding:
max_draft_token_num = self.speculative_config.num_speculative_tokens
self.share_inputs["input_ids_cpu"] = paddle.full(
shape=[max_num_seqs, self.model_config.max_model_len],
fill_value=1,
dtype="int64",
).cpu()
self.share_inputs["accept_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
self.share_inputs["draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["actual_draft_token_num"] = paddle.full(
shape=[max_num_seqs],
fill_value=max_draft_token_num,
dtype="int32",
)
self.share_inputs["output_cum_offsets"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
self.share_inputs["output_padding_offset"] = paddle.full(
shape=[max_num_seqs * (max_draft_token_num + 1)],
fill_value=0,
dtype="int32",
)
# For V1_KVCACHE_SCHEDULER
self.share_inputs["step_draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["step_seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype=bool)
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype=bool)
# For MTP Logprob
self.share_inputs["draft_logits"] = paddle.full(
[max_num_seqs * (self.speculative_config.num_speculative_tokens + 1), self.model_config.vocab_size],
-1,
dtype="float32",
)
self.share_inputs["cu_batch_token_offset"] = paddle.full(
shape=[max_num_seqs + 1], fill_value=0, dtype="int32"
)
self.max_num_seqs = max_num_seqs
def _prepare_inputs(self, is_dummy_run=False) -> None:
"""Prepare the model inputs"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
@@ -646,9 +730,9 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs,
use_speculate_method=False,
use_speculate_method=self.speculative_decoding,
block_size=self.cache_config.block_size,
draft_tokens=None,
draft_tokens=self.share_inputs["draft_tokens"] if self.speculative_decoding else None,
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_profiling=is_dummy_run,
@@ -696,6 +780,7 @@ class XPUModelRunner(ModelRunnerBase):
# 2. Load lora model
# 3. Load drafter model(for speculative decoding)
self._init_speculative_proposer()
def get_model(self) -> nn.Layer:
"""Get current model"""
@@ -793,6 +878,44 @@ class XPUModelRunner(ModelRunnerBase):
)
head_dim = self.model_config.head_dim
if self.speculative_decoding:
# Initialize AttentionBackend buffers
encoder_block_shape_q = 64
decoder_block_shape_q = 16
decoder_step_token_num = self.speculative_config.num_speculative_tokens + 1
decode_max_tile_size = self.max_num_seqs * np.ceil(
(decoder_step_token_num * np.ceil(num_heads / self.model_config.kv_num_heads)) / decoder_block_shape_q
)
group_size = np.ceil(num_heads / self.model_config.kv_num_heads)
encode_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
(self.model_config.max_model_len * group_size) / encoder_block_shape_q
)
kv_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
self.model_config.max_model_len / self.fd_config.cache_config.block_size
)
self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full(
[int(decode_max_tile_size)], 0, dtype="int32"
)
self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
# NOTE: (changwenbin) MLA kernel only needs decoder_num_blocks_device in place of GPU tensor,
# adapted to cudagraph.
self.share_inputs["decoder_num_blocks_device"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["decoder_chunk_size_device"] = paddle.full([1], 64, dtype="int32")
self.share_inputs["max_len_tensor_cpu"] = paddle.full([8], 0, dtype="int32").cpu()
self.share_inputs["encoder_batch_ids"] = paddle.full([int(encode_max_tile_size)], 0, dtype="int32")
self.share_inputs["encoder_tile_ids_per_batch"] = paddle.full(
[int(encode_max_tile_size)], 0, dtype="int32"
)
self.share_inputs["encoder_num_blocks_x_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
self.share_inputs["kv_batch_ids"] = paddle.full([int(kv_max_tile_size)], 0, dtype="int32")
self.share_inputs["kv_tile_ids_per_batch"] = paddle.full([int(kv_max_tile_size)], 0, dtype="int32")
self.share_inputs["kv_num_blocks_x_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
self.share_inputs["max_len_kv_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(
@@ -851,12 +974,38 @@ class XPUModelRunner(ModelRunnerBase):
"""
self._dummy_prefill_inputs(num_tokens, batch_size)
if self.speculative_method in ["mtp"]:
self.proposer.dummy_prefill_inputs(
num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=1,
)
while True:
self.execute_model(is_dummy_run=True)
if int((self.share_inputs["seq_lens_this_time"] > 0).sum()) == 0:
break
def _init_speculative_proposer(self):
"""
Init speculative proposer
"""
if self.speculative_method == "ngram":
# xpu not support ngram proposer now
# self.proposer = NgramProposer(self.fd_config)
self.proposer = None
elif self.speculative_method == "mtp":
self.proposer = MTPProposer(
self.fd_config,
self.get_model(),
self.local_rank,
self.device_id,
self.share_inputs,
)
else:
self.proposer = None
def _set_debug_level(
self, debug_level: int = 0x1, model_forward_batch: Optional[List[Request]] = None, is_dummy_run: bool = False
) -> None:
@@ -941,7 +1090,16 @@ class XPUModelRunner(ModelRunnerBase):
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hidden_states)
sampler_output = self.sampler(logits, self.sampling_metadata)
sampler_output = None
if not self.speculative_decoding:
sampler_output = self.sampler(logits, self.sampling_metadata)
else:
self.sampler(
logits,
self.sampling_metadata,
self.model_config.max_model_len,
self.share_inputs,
)
# 5. Speculative decode
@@ -961,26 +1119,36 @@ class XPUModelRunner(ModelRunnerBase):
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
# 投机解码
full_hidden_states=None,
full_hidden_states=model_output if self.speculative_decoding else None,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.local_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=None,
actual_draft_token_num=None,
accept_tokens=None,
accept_num=None,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
)
xpu_post_process_normal(
sampled_token_ids=sampler_output.sampled_token_ids,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
skip_save_output=is_dummy_run,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
if self.speculative_decoding:
# base model post process
xpu_post_process_specualate(model_output_data, False, is_dummy_run)
else:
xpu_post_process_normal(
sampled_token_ids=sampler_output.sampled_token_ids,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
skip_save_output=is_dummy_run,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
# draft model propose
if self.speculative_method == "mtp":
self.proposer.run(full_hidden_states=model_output)
# 7. Updata 'infer_seed' and step_paddle()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
@@ -989,6 +1157,8 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs,
self.cache_config.block_size,
self.cache_config.enc_dec_block_num,
self.speculative_decoding,
self.speculative_config.num_speculative_tokens,
)
if self.pd_disaggregation_mode == "per_chunk" or self.pd_disaggregation_mode == "per_query":
@@ -1013,6 +1183,9 @@ class XPUModelRunner(ModelRunnerBase):
self.num_gpu_blocks = self.cache_config.total_block_num
self.initialize_kv_cache(profile=True)
if self.speculative_method in ["mtp"]:
self.proposer.initialize_kv_cache(main_model_num_blocks=self.num_gpu_blocks, profile=True)
self._dummy_run(
num_tokens=int(self.scheduler_config.max_num_batched_tokens),
batch_size=min(self.scheduler_config.max_num_seqs, 1),

View File

@@ -167,9 +167,9 @@ class XpuWorker(WorkerBase):
and workers and modelrunners should not perceive it.
"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
self.model_runner.insert_tasks_v1(req_dicts=req_dicts, num_running_requests=num_running_requests)
else:
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts)
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts, num_running_requests=num_running_requests)
def graph_optimize_and_warm_up_model(self) -> None:
"""