Update ppseg with eigen functions (#238)

* Update ppseg backend support type

* Update ppseg preprocess if condition

* Update README.md

* Update README.md

* Update README.md

* Update ppseg with eigen functions

* Delete old argmax function

* Update README.md

* Delete apply_softmax in ppseg example demo

* Update ppseg code with createFromTensor function

* Delete FDTensor2CVMat function

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update ppseg model.cc with transpose&&softmax in place convert

* Update segmentation_result.md

* Update model.cc

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-09-22 21:21:47 +08:00
committed by GitHub
parent 5ad7f64a3a
commit 625845c7d6
13 changed files with 237 additions and 204 deletions

View File

@@ -18,7 +18,7 @@ struct DetectionResult {
``` ```
- **label_map**: 成员变量,表示单张图片每个像素点的分割类别,`label_map.size()`表示图片像素点的个数 - **label_map**: 成员变量,表示单张图片每个像素点的分割类别,`label_map.size()`表示图片像素点的个数
- **score_map**: 成员变量与label_map一一对应的所预测的分割类别概率值(当导出模型时指定`without_argmax`)或者经过softmax归一化化后的概率值(当导出模型时指定`without_argmax`以及`with_softmax`或者导出模型时指定`without_argmax`同时模型初始化的时候设置模型[类成员属性](../../../examples/vision/segmentation/paddleseg/cpp/)`with_softmax=True`) - **score_map**: 成员变量与label_map一一对应的所预测的分割类别概率值(当导出模型时指定`--output_op argmax`)或者经过softmax归一化化后的概率值(当导出模型时指定`--output_op softmax`或者导出模型时指定`--output_op none`同时模型初始化的时候设置模型[类成员属性](../../../examples/vision/segmentation/paddleseg/cpp/)`apply_softmax=True`)
- **shape**: 成员变量表示输出图片的shape为H\*W - **shape**: 成员变量表示输出图片的shape为H\*W
- **Clear()**: 成员函数,用于清除结构体中存储的结果 - **Clear()**: 成员函数,用于清除结构体中存储的结果
- **Str()**: 成员函数将结构体中的信息以字符串形式输出用于Debug - **Str()**: 成员函数将结构体中的信息以字符串形式输出用于Debug
@@ -28,5 +28,5 @@ struct DetectionResult {
`fastdeploy.vision.SegmentationResult` `fastdeploy.vision.SegmentationResult`
- **label_map**(list of int): 成员变量,表示单张图片每个像素点的分割类别 - **label_map**(list of int): 成员变量,表示单张图片每个像素点的分割类别
- **score_map**(list of float): 成员变量与label_map一一对应的所预测的分割类别概率值(当导出模型时指定`without_argmax`)或者经过softmax归一化化后的概率值(当导出模型时指定`without_argmax`以及`with_softmax`或者导出模型时指定`without_argmax`同时模型初始化的时候设置模型[类成员属性](../../../examples/vision/segmentation/paddleseg/python/)`with_softmax=true`) - **score_map**(list of float): 成员变量与label_map一一对应的所预测的分割类别概率值(当导出模型时指定`--output_op argmax`)或者经过softmax归一化化后的概率值(当导出模型时指定`--output_op softmax`或者导出模型时指定`--output_op none`同时模型初始化的时候设置模型[类成员属性](../../../examples/vision/segmentation/paddleseg/python/)`apply_softmax=true`)
- **shape**(list of int): 成员变量表示输出图片的shape为H\*W - **shape**(list of int): 成员变量表示输出图片的shape为H\*W

View File

@@ -21,16 +21,19 @@ PaddleSeg模型导出请参考其文档说明[模型导出](https://github.co
## 下载预训练模型 ## 下载预训练模型
为了方便开发者的测试下面提供了PaddleSeg导出的部分模型导出方式为**不指定**`input_shape``with_softmax`**指定**`without_argmax`),开发者可直接下载使用。 为了方便开发者的测试下面提供了PaddleSeg导出的部分模型导出方式为**不指定**`--input_shape`**指定**`--output_op none`),开发者可直接下载使用。
| 模型 | 参数文件大小 |输入Shape | mIoU | mIoU (flip) | mIoU (ms+flip) | | 模型 | 参数文件大小 |输入Shape | mIoU | mIoU (flip) | mIoU (ms+flip) |
|:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- | |:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- |
| [Unet-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz) | 52MB | 1024x512 | 65.00% | 66.02% | 66.89% | | [Unet-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz) | 52MB | 1024x512 | 65.00% | 66.02% | 66.89% |
| [PP-LiteSeg-T(STDC1)-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz) | 31MB | 1024x512 |73.10% | 73.89% | - | | [PP-LiteSeg-T(STDC1)-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz) | 31MB | 1024x512 |73.10% | 73.89% | - |
| [PP-HumanSegV1-Lite](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - | | [PP-HumanSegV1-Lite(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - |
| [PP-HumanSegV1-Server](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - | | [PP-HumanSegV2-Lite(通用人像分割模型)](https://bj.bcebos.com/paddle2onnx/libs/PP_HumanSegV2_Lite_192x192_infer.tgz) | 12MB | 192x192 | 92.52% | - | - |
| [PP-HumanSegV2-Mobile(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_infer.tgz) | 29MB | 192x192 | 93.13% | - | - |
| [PP-HumanSegV1-Server(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - |
| [Portait-PP-HumanSegV2_Lite(肖像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz) | 3.6M | 256x144 | 96.63% | - | - |
| [FCN-HRNet-W18-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% | | [FCN-HRNet-W18-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% |
| [Deeplabv3-ResNet50-OS8-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet50_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% | | [Deeplabv3-ResNet101-OS8-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet101_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% |
## 详细部署文档 ## 详细部署文档

View File

@@ -7,7 +7,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md) - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start) - 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 以Linux上推理为例在本目录执行如下命令即可完成编译测试
```bash ```bash
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
@@ -25,16 +25,16 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理 # CPU推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0 ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理 # GPU推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1 ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
# GPU上TensorRT推理 # GPU上TensorRT推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2 ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
``` ```
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px /> <img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div> </div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
@@ -80,10 +80,10 @@ PaddleSegModel模型加载和初始化其中model_file为导出的Paddle模
#### 预处理参数 #### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`True`表明输入图片是竖屏即height大于width的图片 > > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数 #### 后处理参数
> > * **with_softmax**(bool): 当模型导出时,并未指定`with_softmax`参数,可通过此设置此参数为`True`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理 > > * **appy_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
- [模型介绍](../../) - [模型介绍](../../)
- [Python部署](../python) - [Python部署](../python)

View File

@@ -26,6 +26,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto config_file = model_dir + sep + "deploy.yaml"; auto config_file = model_dir + sep + "deploy.yaml";
auto model = fastdeploy::vision::segmentation::PaddleSegModel( auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file); model_file, params_file, config_file);
if (!model.Initialized()) { if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl; std::cerr << "Failed to initialize." << std::endl;
return; return;
@@ -40,6 +41,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
return; return;
} }
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res); auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im); cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
@@ -54,6 +56,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
option.UseGpu(); option.UseGpu();
auto model = fastdeploy::vision::segmentation::PaddleSegModel( auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option); model_file, params_file, config_file, option);
if (!model.Initialized()) { if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl; std::cerr << "Failed to initialize." << std::endl;
return; return;
@@ -68,6 +71,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
return; return;
} }
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res); auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im); cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
@@ -85,6 +89,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
{1, 3, 2048, 2048}); {1, 3, 2048, 2048});
auto model = fastdeploy::vision::segmentation::PaddleSegModel( auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option); model_file, params_file, config_file, option);
if (!model.Initialized()) { if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl; std::cerr << "Failed to initialize." << std::endl;
return; return;
@@ -99,6 +104,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
return; return;
} }
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res); auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im); cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;

View File

@@ -27,7 +27,7 @@ python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px /> <img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div> </div>
## PaddleSegModel Python接口 ## PaddleSegModel Python接口
@@ -69,7 +69,7 @@ PaddleSeg模型加载和初始化其中model_file, params_file以及config_fi
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片 > > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数 #### 后处理参数
> > * **with_softmax**(bool): 当模型导出时,并未指定`with_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理 > > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
## 其它文档 ## 其它文档

View File

@@ -116,5 +116,56 @@ FDDataType Mat::Type() {
} }
} }
Mat CreateFromTensor(const FDTensor& tensor) {
int type = tensor.dtype;
cv::Mat temp_mat;
FDASSERT(tensor.shape.size() == 3,
"When create FD Mat from tensor, tensor shape should be 3-Dim, HWC "
"layout");
int64_t height = tensor.shape[0];
int64_t width = tensor.shape[1];
int64_t channel = tensor.shape[2];
switch (type) {
case FDDataType::UINT8:
temp_mat = cv::Mat(height, width, CV_8UC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT8:
temp_mat = cv::Mat(height, width, CV_8SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT16:
temp_mat = cv::Mat(height, width, CV_16SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::INT32:
temp_mat = cv::Mat(height, width, CV_32SC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::FP32:
temp_mat = cv::Mat(height, width, CV_32FC(channel),
const_cast<void*>(tensor.Data()));
break;
case FDDataType::FP64:
temp_mat = cv::Mat(height, width, CV_64FC(channel),
const_cast<void*>(tensor.Data()));
break;
default:
FDASSERT(
false,
"Tensor type %d is not supported While calling CreateFromTensor.",
type);
break;
}
Mat mat = Mat(temp_mat);
return mat;
}
} // namespace vision } // namespace vision
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -76,5 +76,7 @@ struct FASTDEPLOY_DECL Mat {
Device device = Device::CPU; Device device = Device::CPU;
}; };
Mat CreateFromTensor(const FDTensor& tensor);
} // namespace vision } // namespace vision
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -1,59 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/segmentation/ppseg/model.h"
namespace fastdeploy {
namespace vision {
namespace segmentation {
void FDTensor2FP32CVMat(cv::Mat& mat, FDTensor& infer_result,
bool contain_score_map) {
// output with argmax channel is 1
int channel = 1;
int height = infer_result.shape[1];
int width = infer_result.shape[2];
if (contain_score_map) {
// output without argmax and convent to NHWC
channel = infer_result.shape[3];
}
// create FP32 cvmat
if (infer_result.dtype == FDDataType::INT64) {
FDWARNING << "The PaddleSeg model is exported with argmax. Inference "
"result type is " +
Str(infer_result.dtype) +
". If you want the edge of segmentation image more "
"smoother. Please export model with --without_argmax "
"--with_softmax."
<< std::endl;
int64_t chw = channel * height * width;
int64_t* infer_result_buffer = static_cast<int64_t*>(infer_result.Data());
std::vector<float_t> float_result_buffer(chw);
mat = cv::Mat(height, width, CV_32FC(channel));
int index = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
mat.at<float_t>(i, j) =
static_cast<float_t>(infer_result_buffer[index++]);
}
}
} else if (infer_result.dtype == FDDataType::FP32) {
mat = cv::Mat(height, width, CV_32FC(channel), infer_result.Data());
}
}
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy

View File

@@ -14,7 +14,7 @@ PaddleSegModel::PaddleSegModel(const std::string& model_file,
const ModelFormat& model_format) { const ModelFormat& model_format) {
config_file_ = config_file; config_file_ = config_file;
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER}; valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER};
runtime_option = custom_option; runtime_option = custom_option;
runtime_option.model_format = model_format; runtime_option.model_format = model_format;
runtime_option.model_file = model_file; runtime_option.model_file = model_file;
@@ -79,12 +79,32 @@ bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
} }
processors_.push_back(std::make_shared<HWC2CHW>()); processors_.push_back(std::make_shared<HWC2CHW>());
} }
if (cfg["Deploy"]["output_op"]) {
std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
if (output_op == "softmax") {
is_with_softmax = true;
is_with_argmax = false;
} else if (output_op == "argmax") {
is_with_softmax = false;
is_with_argmax = true;
} else if (output_op == "none") {
is_with_softmax = false;
is_with_argmax = false;
} else {
FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
<< "." << std::endl;
}
}
if (is_with_argmax) {
FDWARNING << "The PaddleSeg model is exported with argmax."
<< " If you want the edge of segmentation image more"
<< " smoother. Please export model with parameters"
<< " --output_op softmax." << std::endl;
}
return true; return true;
} }
bool PaddleSegModel::Preprocess( bool PaddleSegModel::Preprocess(Mat* mat, FDTensor* output) {
Mat* mat, FDTensor* output,
std::map<std::string, std::array<int, 2>>* im_info) {
for (size_t i = 0; i < processors_.size(); ++i) { for (size_t i = 0; i < processors_.size(); ++i) {
if (processors_[i]->Name().compare("Resize") == 0) { if (processors_[i]->Name().compare("Resize") == 0) {
auto processor = dynamic_cast<Resize*>(processors_[i].get()); auto processor = dynamic_cast<Resize*>(processors_[i].get());
@@ -105,10 +125,6 @@ bool PaddleSegModel::Preprocess(
} }
} }
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<int>(mat->Height()),
static_cast<int>(mat->Width())};
mat->ShareWithTensor(output); mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); output->shape.insert(output->shape.begin(), 1);
output->name = InputInfoOfRuntime(0).name; output->name = InputInfoOfRuntime(0).name;
@@ -116,13 +132,15 @@ bool PaddleSegModel::Preprocess(
} }
bool PaddleSegModel::Postprocess( bool PaddleSegModel::Postprocess(
FDTensor& infer_result, SegmentationResult* result, FDTensor* infer_result, SegmentationResult* result,
std::map<std::string, std::array<int, 2>>* im_info) { const std::map<std::string, std::array<int, 2>>& im_info) {
// PaddleSeg has three types of inference output: // PaddleSeg has three types of inference output:
// 1. output with argmax and without softmax. 3-D matrix CHW, Channel // 1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
// always 1, the element in matrix is classified label_id INT64 Type. // always 1, the element in matrix is classified label_id INT64 Type.
// 2. output without argmax and without softmax. 4-D matrix NCHW, N always // 2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
// 1, Channel is the num of classes. The element is the logits of classes // always
// 1(only support batch size 1), Channel is the num of classes. The
// element is the logits of classes
// FP32 // FP32
// 3. output without argmax and with softmax. 4-D matrix NCHW, the result // 3. output without argmax and with softmax. 4-D matrix NCHW, the result
// of 2 with softmax layer // of 2 with softmax layer
@@ -130,59 +148,117 @@ bool PaddleSegModel::Postprocess(
// 1. label_map // 1. label_map
// 2. score_map(optional) // 2. score_map(optional)
// 3. shape: 2-D HW // 3. shape: 2-D HW
FDASSERT(infer_result.dtype == FDDataType::INT64 || FDASSERT(infer_result->dtype == FDDataType::INT64 ||
infer_result.dtype == FDDataType::FP32, infer_result->dtype == FDDataType::FP32 ||
"Require the data type of output is int64 or fp32, but now it's %s.", infer_result->dtype == FDDataType::INT32,
Str(infer_result.dtype).c_str()); "Require the data type of output is int64, fp32 or int32, but now "
"it's %s.",
Str(infer_result->dtype).c_str());
result->Clear(); result->Clear();
FDASSERT(infer_result->shape[0] == 1, "Only support batch size = 1.");
if (infer_result.shape.size() == 4) { int64_t batch = infer_result->shape[0];
FDASSERT(infer_result.shape[0] == 1, "Only support batch size = 1."); int64_t channel = 0;
int64_t height = 0;
int64_t width = 0;
if (is_with_argmax) {
channel = 1;
height = infer_result->shape[1];
width = infer_result->shape[2];
} else {
channel = infer_result->shape[1];
height = infer_result->shape[2];
width = infer_result->shape[3];
}
int64_t chw = channel * height * width;
if (!is_with_softmax && apply_softmax) {
Softmax(*infer_result, infer_result, 1);
}
if (!is_with_argmax) {
// output without argmax // output without argmax
result->contain_score_map = true; result->contain_score_map = true;
utils::NCHW2NHWC<float_t>(infer_result);
std::vector<int64_t> dim{0, 2, 3, 1};
Transpose(*infer_result, infer_result, dim);
} }
// batch always 1, so ignore
infer_result->shape = {height, width, channel};
// for resize mat below // for resize mat below
FDTensor new_infer_result; FDTensor new_infer_result;
Mat* mat = nullptr; Mat* mat = nullptr;
std::vector<float_t>* fp32_result_buffer = nullptr;
if (is_resized) { if (is_resized) {
cv::Mat temp_mat; if (infer_result->dtype == FDDataType::INT64 ||
FDTensor2FP32CVMat(temp_mat, infer_result, result->contain_score_map); infer_result->dtype == FDDataType::INT32) {
if (infer_result->dtype == FDDataType::INT64) {
// original image shape int64_t* infer_result_buffer =
auto iter_ipt = (*im_info).find("input_shape"); static_cast<int64_t*>(infer_result->Data());
FDASSERT(iter_ipt != im_info->end(), // cv::resize don't support `CV_8S` or `CV_32S`
// refer to https://github.com/opencv/opencv/issues/20991
// https://github.com/opencv/opencv/issues/7862
fp32_result_buffer = new std::vector<float_t>(
infer_result_buffer, infer_result_buffer + chw);
}
if (infer_result->dtype == FDDataType::INT32) {
int32_t* infer_result_buffer =
static_cast<int32_t*>(infer_result->Data());
// cv::resize don't support `CV_8S` or `CV_32S`
// refer to https://github.com/opencv/opencv/issues/20991
// https://github.com/opencv/opencv/issues/7862
fp32_result_buffer = new std::vector<float_t>(
infer_result_buffer, infer_result_buffer + chw);
}
infer_result->Resize(infer_result->shape, FDDataType::FP32);
infer_result->SetExternalData(
infer_result->shape, FDDataType::FP32,
static_cast<void*>(fp32_result_buffer->data()));
}
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_ipt != im_info.end(),
"Cannot find input_shape from im_info."); "Cannot find input_shape from im_info.");
int ipt_h = iter_ipt->second[0]; int ipt_h = iter_ipt->second[0];
int ipt_w = iter_ipt->second[1]; int ipt_w = iter_ipt->second[1];
mat = new Mat(CreateFromTensor(*infer_result));
mat = new Mat(temp_mat); Resize::Run(mat, ipt_w, ipt_h, -1.0f, -1.0f, 1);
Resize::Run(mat, ipt_w, ipt_h, -1, -1, 1);
mat->ShareWithTensor(&new_infer_result); mat->ShareWithTensor(&new_infer_result);
new_infer_result.shape.insert(new_infer_result.shape.begin(), 1);
result->shape = new_infer_result.shape; result->shape = new_infer_result.shape;
} else { } else {
result->shape = infer_result.shape; result->shape = infer_result->shape;
} }
// output shape is 2-D HW layout, so out_num = H * W
int out_num = int out_num =
std::accumulate(result->shape.begin(), result->shape.begin() + 3, 1, std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
std::multiplies<int>()); std::multiplies<int>());
// NCHW remove N or CHW remove C
result->shape.erase(result->shape.begin());
result->Resize(out_num); result->Resize(out_num);
if (result->contain_score_map) { if (result->contain_score_map) {
// output with label_map and score_map // output with label_map and score_map
float_t* infer_result_buffer = nullptr; int32_t* argmax_infer_result_buffer = nullptr;
if (is_resized) { float_t* score_infer_result_buffer = nullptr;
infer_result_buffer = static_cast<float_t*>(new_infer_result.Data()); FDTensor argmax_infer_result;
} else { FDTensor max_score_result;
infer_result_buffer = static_cast<float_t*>(infer_result.Data()); std::vector<int64_t> reduce_dim{-1};
}
// argmax // argmax
utils::ArgmaxScoreMap(infer_result_buffer, result, with_softmax); if (is_resized) {
result->shape.erase(result->shape.begin() + 2); ArgMax(new_infer_result, &argmax_infer_result, -1, FDDataType::INT32);
Max(new_infer_result, &max_score_result, reduce_dim);
} else {
ArgMax(*infer_result, &argmax_infer_result, -1, FDDataType::INT32);
Max(*infer_result, &max_score_result, reduce_dim);
}
argmax_infer_result_buffer =
static_cast<int32_t*>(argmax_infer_result.Data());
score_infer_result_buffer = static_cast<float_t*>(max_score_result.Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(argmax_infer_result_buffer + i));
}
std::memcpy(result->score_map.data(), score_infer_result_buffer,
out_num * sizeof(float_t));
} else { } else {
// output only with label_map // output only with label_map
if (is_resized) { if (is_resized) {
@@ -192,13 +268,27 @@ bool PaddleSegModel::Postprocess(
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i)); result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
} }
} else { } else {
const int64_t* infer_result_buffer = if (infer_result->dtype == FDDataType::INT64) {
reinterpret_cast<const int64_t*>(infer_result.Data()); const int64_t* infer_result_buffer =
for (int i = 0; i < out_num; i++) { static_cast<const int64_t*>(infer_result->Data());
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i)); for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(infer_result_buffer + i));
}
}
if (infer_result->dtype == FDDataType::INT32) {
const int32_t* infer_result_buffer =
static_cast<const int32_t*>(infer_result->Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(infer_result_buffer + i));
}
} }
} }
} }
// HWC remove C
result->shape.erase(result->shape.begin() + 2);
delete fp32_result_buffer;
delete mat; delete mat;
mat = nullptr; mat = nullptr;
return true; return true;
@@ -213,10 +303,8 @@ bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
// Record the shape of image and the shape of preprocessed image // Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<int>(mat.Height()), im_info["input_shape"] = {static_cast<int>(mat.Height()),
static_cast<int>(mat.Width())}; static_cast<int>(mat.Width())};
im_info["output_shape"] = {static_cast<int>(mat.Height()),
static_cast<int>(mat.Width())};
if (!Preprocess(&mat, &(processed_data[0]), &im_info)) { if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:" FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl; << ModelName() << "." << std::endl;
return false; return false;
@@ -227,7 +315,7 @@ bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
<< std::endl; << std::endl;
return false; return false;
} }
if (!Postprocess(infer_result[0], result, &im_info)) { if (!Postprocess(&infer_result[0], result, im_info)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "." FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl; << std::endl;
return false; return false;

View File

@@ -18,7 +18,7 @@ class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
virtual bool Predict(cv::Mat* im, SegmentationResult* result); virtual bool Predict(cv::Mat* im, SegmentationResult* result);
bool with_softmax = false; bool apply_softmax = false;
bool is_vertical_screen = false; bool is_vertical_screen = false;
@@ -27,20 +27,21 @@ class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
bool BuildPreprocessPipelineFromConfig(); bool BuildPreprocessPipelineFromConfig();
bool Preprocess(Mat* mat, FDTensor* outputs, bool Preprocess(Mat* mat, FDTensor* outputs);
std::map<std::string, std::array<int, 2>>* im_info);
bool Postprocess(FDTensor& infer_result, SegmentationResult* result, bool Postprocess(FDTensor* infer_result, SegmentationResult* result,
std::map<std::string, std::array<int, 2>>* im_info); const std::map<std::string, std::array<int, 2>>& im_info);
bool is_resized = false; bool is_resized = false;
bool is_with_softmax = false;
bool is_with_argmax = true;
std::vector<std::shared_ptr<Processor>> processors_; std::vector<std::shared_ptr<Processor>> processors_;
std::string config_file_; std::string config_file_;
}; };
void FDTensor2FP32CVMat(cv::Mat& mat, FDTensor& infer_result,
bool contain_score_map);
} // namespace segmentation } // namespace segmentation
} // namespace vision } // namespace vision
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -27,8 +27,8 @@ void BindPPSeg(pybind11::module& m) {
self.Predict(&mat, res); self.Predict(&mat, res);
return res; return res;
}) })
.def_readwrite("with_softmax", .def_readwrite("apply_softmax",
&vision::segmentation::PaddleSegModel::with_softmax) &vision::segmentation::PaddleSegModel::apply_softmax)
.def_readwrite("is_vertical_screen", .def_readwrite("is_vertical_screen",
&vision::segmentation::PaddleSegModel::is_vertical_screen); &vision::segmentation::PaddleSegModel::is_vertical_screen);
} }

View File

@@ -20,6 +20,11 @@
#include "fastdeploy/utils/utils.h" #include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/common/result.h" #include "fastdeploy/vision/common/result.h"
// #include "unsupported/Eigen/CXX11/Tensor"
#include "fastdeploy/function/reduce.h"
#include "fastdeploy/function/softmax.h"
#include "fastdeploy/function/transpose.h"
namespace fastdeploy { namespace fastdeploy {
namespace vision { namespace vision {
namespace utils { namespace utils {
@@ -51,70 +56,6 @@ std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
return res; return res;
} }
template <typename T>
void ArgmaxScoreMap(T infer_result_buffer, SegmentationResult* result,
bool with_softmax) {
int64_t height = result->shape[0];
int64_t width = result->shape[1];
int64_t num_classes = result->shape[2];
int index = 0;
for (size_t i = 0; i < height; ++i) {
for (size_t j = 0; j < width; ++j) {
int64_t s = (i * width + j) * num_classes;
T max_class_score = std::max_element(
infer_result_buffer + s, infer_result_buffer + s + num_classes);
int label_id = std::distance(infer_result_buffer + s, max_class_score);
if (label_id >= 255) {
FDWARNING << "label_id is stored by uint8_t, now the value is bigger "
"than 255, it's "
<< static_cast<int>(label_id) << "." << std::endl;
}
result->label_map[index] = static_cast<uint8_t>(label_id);
if (with_softmax) {
double_t total = 0;
for (int k = 0; k < num_classes; k++) {
total += exp(*(infer_result_buffer + s + k) - *max_class_score);
}
double_t softmax_class_score = 1 / total;
result->score_map[index] = static_cast<float>(softmax_class_score);
} else {
result->score_map[index] = static_cast<float>(*max_class_score);
}
index++;
}
}
}
template <typename T>
void NCHW2NHWC(FDTensor& infer_result) {
T* infer_result_buffer = reinterpret_cast<T*>(infer_result.MutableData());
int num = infer_result.shape[0];
int channel = infer_result.shape[1];
int height = infer_result.shape[2];
int width = infer_result.shape[3];
int chw = channel * height * width;
int wc = width * channel;
int wh = width * height;
std::vector<T> hwc_data(chw);
int index = 0;
for (int n = 0; n < num; n++) {
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
hwc_data[n * chw + h * wc + w * channel + c] =
*(infer_result_buffer + index);
index++;
}
}
}
}
std::memcpy(infer_result.MutableData(), hwc_data.data(),
num * chw * sizeof(T));
infer_result.shape = {num, height, width, channel};
}
void NMS(DetectionResult* output, float iou_threshold = 0.5); void NMS(DetectionResult* output, float iou_threshold = 0.5);
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5); void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);

View File

@@ -37,15 +37,15 @@ class PaddleSegModel(FastDeployModel):
return self._model.predict(input_image) return self._model.predict(input_image)
@property @property
def with_softmax(self): def apply_softmax(self):
return self._model.with_softmax return self._model.apply_softmax
@with_softmax.setter @apply_softmax.setter
def with_softmax(self, value): def apply_softmax(self, value):
assert isinstance( assert isinstance(
value, value,
bool), "The value to set `with_softmax` must be type of bool." bool), "The value to set `apply_softmax` must be type of bool."
self._model.with_softmax = value self._model.apply_softmax = value
@property @property
def is_vertical_screen(self): def is_vertical_screen(self):