Files
FastDeploy/python/fastdeploy/vision/segmentation/ppseg/__init__.py
huangjianhui 625845c7d6 Update ppseg with eigen functions (#238)
* Update ppseg backend support type

* Update ppseg preprocess if condition

* Update README.md

* Update README.md

* Update README.md

* Update ppseg with eigen functions

* Delete old argmax function

* Update README.md

* Delete apply_softmax in ppseg example demo

* Update ppseg code with createFromTensor function

* Delete FDTensor2CVMat function

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update ppseg model.cc with transpose&&softmax in place convert

* Update segmentation_result.md

* Update model.cc

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-09-22 21:21:47 +08:00

60 lines
2.1 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class PaddleSegModel(FastDeployModel):
def __init__(self,
model_file,
params_file,
config_file,
runtime_option=None,
model_format=ModelFormat.PADDLE):
super(PaddleSegModel, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PaddleSeg only support model format of ModelFormat.Paddle now."
self._model = C.vision.segmentation.PaddleSegModel(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "PaddleSeg model initialize failed."
def predict(self, input_image):
return self._model.predict(input_image)
@property
def apply_softmax(self):
return self._model.apply_softmax
@apply_softmax.setter
def apply_softmax(self, value):
assert isinstance(
value,
bool), "The value to set `apply_softmax` must be type of bool."
self._model.apply_softmax = value
@property
def is_vertical_screen(self):
return self._model.is_vertical_screen
@is_vertical_screen.setter
def is_vertical_screen(self, value):
assert isinstance(
value,
bool), "The value to set `is_vertical_screen` must be type of bool."
self._model.is_vertical_screen = value