mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
@@ -965,7 +965,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="vllm",
|
||||
default="openai-chat",
|
||||
choices=list(ASYNC_REQUEST_FUNCS.keys()),
|
||||
)
|
||||
parser.add_argument(
|
||||
|
@@ -0,0 +1,7 @@
|
||||
from fastdeploy.entrypoints.cli.benchmark.latency import BenchmarkLatencySubcommand
|
||||
from fastdeploy.entrypoints.cli.benchmark.serve import BenchmarkServingSubcommand
|
||||
|
||||
__all__: list[str] = [
|
||||
"BenchmarkLatencySubcommand",
|
||||
"BenchmarkServingSubcommand",
|
||||
]
|
||||
|
0
fastdeploy/entrypoints/cli/benchmark/__init__.py
Normal file
0
fastdeploy/entrypoints/cli/benchmark/__init__.py
Normal file
41
fastdeploy/entrypoints/cli/benchmark/base.py
Normal file
41
fastdeploy/entrypoints/cli/benchmark/base.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/cli/benchmark/base.py
|
||||
|
||||
import argparse
|
||||
|
||||
from fastdeploy.entrypoints.cli.types import CLISubcommand
|
||||
|
||||
|
||||
class BenchmarkSubcommandBase(CLISubcommand):
|
||||
"""The base class of subcommands for vllm bench."""
|
||||
|
||||
help: str
|
||||
|
||||
@classmethod
|
||||
def add_cli_args(cls, parser: argparse.ArgumentParser) -> None:
|
||||
"""Add the CLI arguments to the parser."""
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def cmd(args: argparse.Namespace) -> None:
|
||||
"""Run the benchmark.
|
||||
|
||||
Args:
|
||||
args: The arguments to the command.
|
||||
"""
|
||||
raise NotImplementedError
|
593
fastdeploy/entrypoints/cli/benchmark/datasets.py
Normal file
593
fastdeploy/entrypoints/cli/benchmark/datasets.py
Normal file
@@ -0,0 +1,593 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_dataset.py
|
||||
import argparse
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from contextlib import suppress
|
||||
from dataclasses import dataclass
|
||||
from io import BytesIO
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from fontTools.feaLib import ast
|
||||
from PIL import Image
|
||||
|
||||
from fastdeploy.utils import FlexibleArgumentParser
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SampleRequest:
|
||||
"""
|
||||
Represents a single inference request for benchmarking.
|
||||
"""
|
||||
|
||||
no: int
|
||||
prompt: Union[str, Any]
|
||||
history_QA: Union[str, Any]
|
||||
json_data: Optional[dict]
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
"""BenchmarkDataset"""
|
||||
|
||||
DEFAULT_SEED = 0
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: Optional[str] = None,
|
||||
random_seed: int = DEFAULT_SEED,
|
||||
shuffle: bool = False,
|
||||
hyperparameter_path: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the BenchmarkDataset with an optional dataset path and random
|
||||
seed. Args:
|
||||
dataset_path (Optional[str]): Path to the dataset. If None, it
|
||||
indicates that a default or random dataset might be used.
|
||||
random_seed (int): Seed value for reproducible shuffling or
|
||||
sampling. Defaults to DEFAULT_SEED.
|
||||
"""
|
||||
self.dataset_path = dataset_path
|
||||
# Set the random seed, ensuring that a None value is replaced with the
|
||||
# default seed.
|
||||
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
|
||||
self.data = None
|
||||
self.shuffle = shuffle
|
||||
self.hyperparameter_path = hyperparameter_path
|
||||
self.hyperparameters = {}
|
||||
|
||||
def load_data(self) -> None:
|
||||
"""
|
||||
Load data from the dataset path into self.data.
|
||||
|
||||
This method must be overridden by subclasses since the method to load
|
||||
data will vary depending on the dataset format and source.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
# TODO (jenniferzhao): add support for downloading data
|
||||
raise NotImplementedError("load_data must be implemented in subclasses.")
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, num_requests: int) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
Subclasses must override this method to implement dataset-specific logic
|
||||
for generating a list of SampleRequest objects.
|
||||
|
||||
Args:
|
||||
num_requests (int): The number of sample requests to generate.
|
||||
|
||||
Returns:
|
||||
list[SampleRequest]: A list of sample requests generated from the
|
||||
dataset.
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest], num_requests: int) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
|
||||
Args:
|
||||
requests (List[SampleRequest]): The current list of sampled
|
||||
requests. num_requests (int): The target number of requests.
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests, k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
||||
|
||||
|
||||
def is_valid_sequence(
|
||||
prompt_len: int,
|
||||
output_len: int,
|
||||
min_len: int = 4,
|
||||
max_prompt_len: int = 1024,
|
||||
max_total_len: int = 2048,
|
||||
skip_min_output_len_check: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Validate a sequence based on prompt and output lengths.
|
||||
|
||||
Default pruning criteria are copied from the original `sample_hf_requests`
|
||||
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
||||
from `sample_requests` in benchmark_throughput.py.
|
||||
"""
|
||||
# Check for invalid conditions
|
||||
prompt_too_short = prompt_len < min_len
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
|
||||
prompt_too_long = prompt_len > max_prompt_len
|
||||
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||
|
||||
# Return True if none of the invalid conditions are met
|
||||
return not (prompt_too_short or output_too_short or prompt_too_long or combined_too_long)
|
||||
|
||||
|
||||
def process_image(image: Any) -> Mapping[str, Any]:
|
||||
"""
|
||||
Process a single image input and return a multimedia content dictionary.
|
||||
|
||||
Supports three input types:
|
||||
|
||||
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
||||
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
||||
|
||||
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
||||
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
||||
a dictionary with the image as a base64 data URL.
|
||||
|
||||
3. String input: - Treats the string as a URL or local file path. -
|
||||
Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://". - Returns a dictionary with the image URL.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and "bytes" in image:
|
||||
image = Image.open(BytesIO(image["bytes"]))
|
||||
if isinstance(image, Image.Image):
|
||||
image = image.convert("RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
image.save(image_data, format="JPEG")
|
||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
|
||||
}
|
||||
|
||||
if isinstance(image, str):
|
||||
image_url = image if image.startswith(("http://", "file://")) else f"file://{image}"
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(
|
||||
f"Invalid image input {image}. Must be a PIL.Image.Image" " or str or dictionary with raw image bytes."
|
||||
)
|
||||
|
||||
|
||||
class EBDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||
sample requests based on conversation turns.
|
||||
"""
|
||||
|
||||
temperature: float
|
||||
repetition_penalty: float
|
||||
frequency_penalty: float
|
||||
presence_penalty: float
|
||||
top_p: float
|
||||
prompt_len: int
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
||||
|
||||
if self.shuffle:
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
cnt = 1
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
prompt = entry["text"]
|
||||
self.temperature = float(entry["temperature"])
|
||||
self.repetition_penalty = float(entry["penalty_score"])
|
||||
self.frequency_penalty = float(entry["frequency_score"])
|
||||
self.presence_penalty = float(entry["presence_score"])
|
||||
self.top_p = float(entry["topp"])
|
||||
self.prompt_len = int(entry["input_token_num"])
|
||||
new_output_len = int(entry["max_dec_len"])
|
||||
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
no=cnt,
|
||||
prompt=prompt,
|
||||
prompt_len=self.prompt_len,
|
||||
history_QA=[],
|
||||
expected_output_len=new_output_len,
|
||||
)
|
||||
)
|
||||
cnt += 1
|
||||
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
class EBChatDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||
sample requests based on conversation turns.
|
||||
"""
|
||||
|
||||
prompt_len: int
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
||||
|
||||
if self.shuffle:
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
cnt = 1
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
json_data = entry
|
||||
prompt = entry["messages"][-1].get("content", "")
|
||||
history_QA = entry.get("messages", [])
|
||||
new_output_len = int(entry.get("max_tokens", 12288))
|
||||
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
no=cnt,
|
||||
json_data=json_data,
|
||||
prompt=prompt,
|
||||
prompt_len=0,
|
||||
history_QA=history_QA,
|
||||
expected_output_len=new_output_len,
|
||||
)
|
||||
)
|
||||
cnt += 1
|
||||
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
class _ValidateDatasetArgs(argparse.Action):
|
||||
"""Argparse action to validate dataset name and path compatibility."""
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
setattr(namespace, self.dest, values)
|
||||
|
||||
# Get current values of both dataset_name and dataset_path
|
||||
dataset_name = getattr(namespace, "dataset_name", "random")
|
||||
dataset_path = getattr(namespace, "dataset_path", None)
|
||||
|
||||
# Validate the combination
|
||||
if dataset_name == "random" and dataset_path is not None:
|
||||
parser.error(
|
||||
"Cannot use 'random' dataset with --dataset-path. "
|
||||
"Please specify the appropriate --dataset-name (e.g., "
|
||||
"'sharegpt', 'custom', 'sonnet') for your dataset file: "
|
||||
f"{dataset_path}"
|
||||
)
|
||||
|
||||
|
||||
def get_samples(args):
|
||||
"""Get the sample requests from the specified dataset."""
|
||||
if not hasattr(args, "request_id_prefix"):
|
||||
args.request_id_prefix = ""
|
||||
|
||||
# For datasets that follow a similar structure, use a mapping.
|
||||
dataset_mapping = {
|
||||
"EB": lambda: EBDataset(random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle).sample(
|
||||
num_requests=args.num_prompts,
|
||||
output_len=args.sharegpt_output_len,
|
||||
),
|
||||
"EBChat": lambda: EBChatDataset(
|
||||
random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle
|
||||
).sample(
|
||||
num_requests=args.num_prompts,
|
||||
output_len=args.sharegpt_output_len,
|
||||
),
|
||||
}
|
||||
|
||||
try:
|
||||
input_requests = dataset_mapping[args.dataset_name]()
|
||||
except KeyError as err:
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
|
||||
|
||||
return input_requests
|
||||
|
||||
|
||||
def add_dataset_parser(parser: FlexibleArgumentParser):
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of prompts to process.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=[
|
||||
"sharegpt",
|
||||
"burstgpt",
|
||||
"sonnet",
|
||||
"random",
|
||||
"hf",
|
||||
"EB",
|
||||
"EBChat",
|
||||
],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-stream",
|
||||
action="store_true",
|
||||
help="Do not load the dataset in streaming mode.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
action=_ValidateDatasetArgs,
|
||||
help="Path to the sharegpt/sonnet dataset. " "Or the huggingface dataset ID if using HF dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-oversample",
|
||||
action="store_true",
|
||||
help="Do not oversample if the dataset has " "fewer samples than num-prompts.",
|
||||
)
|
||||
|
||||
# group for dataset specific arguments
|
||||
custom_group = parser.add_argument_group("custom dataset options")
|
||||
custom_group.add_argument(
|
||||
"--custom-output-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of output tokens per request, used only for custom dataset.",
|
||||
)
|
||||
custom_group.add_argument(
|
||||
"--custom-skip-chat-template",
|
||||
action="store_true",
|
||||
help="Skip applying chat template to prompt, used only for custom dataset.",
|
||||
)
|
||||
|
||||
spec_bench_group = parser.add_argument_group("spec bench dataset options")
|
||||
spec_bench_group.add_argument(
|
||||
"--spec-bench-output-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Num of output tokens per request, used only for spec bench dataset.",
|
||||
)
|
||||
spec_bench_group.add_argument(
|
||||
"--spec-bench-category",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Category for spec bench dataset. If None, use all categories.",
|
||||
)
|
||||
|
||||
sonnet_group = parser.add_argument_group("sonnet dataset options")
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-input-len",
|
||||
type=int,
|
||||
default=550,
|
||||
help="Number of input tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-output-len",
|
||||
type=int,
|
||||
default=150,
|
||||
help="Number of output tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-prefix-len",
|
||||
type=int,
|
||||
default=200,
|
||||
help="Number of prefix tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
|
||||
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
|
||||
sharegpt_group.add_argument(
|
||||
"--sharegpt-output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the output length " "from the ShareGPT dataset.",
|
||||
)
|
||||
|
||||
blazedit_group = parser.add_argument_group("blazedit dataset options")
|
||||
blazedit_group.add_argument(
|
||||
"--blazedit-min-distance",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Minimum distance for blazedit dataset. Min: 0, Max: 1.0",
|
||||
)
|
||||
blazedit_group.add_argument(
|
||||
"--blazedit-max-distance",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Maximum distance for blazedit dataset. Min: 0, Max: 1.0",
|
||||
)
|
||||
|
||||
random_group = parser.add_argument_group("random dataset options")
|
||||
random_group.add_argument(
|
||||
"--random-input-len",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="Number of input tokens per request, used only for random sampling.",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Number of output tokens per request, used only for random sampling.",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Range ratio for sampling input/output length, "
|
||||
"used only for random sampling. Must be in the range [0, 1) to define "
|
||||
"a symmetric sampling range"
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-prefix-len",
|
||||
type=int,
|
||||
default=0,
|
||||
help=(
|
||||
"Number of fixed prefix tokens before the random context "
|
||||
"in a request. "
|
||||
"The total input length is the sum of `random-prefix-len` and "
|
||||
"a random "
|
||||
"context length sampled from [input_len * (1 - range_ratio), "
|
||||
"input_len * (1 + range_ratio)]."
|
||||
),
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-batch-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help=("Batch size for random sampling. " "Only used for embeddings benchmark."),
|
||||
)
|
||||
|
||||
def _parse_mm_bucket_config(v: object) -> dict[tuple[int, int, int], float]:
|
||||
# If already a dict (e.g., programmatic call), normalize keys
|
||||
def normalize(d: dict) -> dict[tuple[int, int, int], float]:
|
||||
out: dict[tuple[int, int, int], float] = {}
|
||||
for k, val in d.items():
|
||||
key = k
|
||||
if isinstance(key, str):
|
||||
with suppress(Exception):
|
||||
key = ast.literal_eval(key)
|
||||
if not (isinstance(key, tuple) and len(key) == 3 and all(isinstance(x, int) for x in key)):
|
||||
raise ValueError(f"Invalid bucket key {k!r}. Expected tuple (H, W, T).")
|
||||
out[(int(key[0]), int(key[1]), int(key[2]))] = float(val)
|
||||
return out
|
||||
|
||||
if isinstance(v, dict):
|
||||
return normalize(v)
|
||||
if isinstance(v, str):
|
||||
# Python literal (supports tuple keys)
|
||||
parsed = ast.literal_eval(v)
|
||||
if not isinstance(parsed, dict):
|
||||
raise ValueError("Bucket config must parse to a dict.")
|
||||
return normalize(parsed)
|
||||
raise ValueError("Unsupported value for --random-mm-bucket-config.")
|
||||
|
||||
hf_group = parser.add_argument_group("hf dataset options")
|
||||
hf_group.add_argument("--hf-subset", type=str, default=None, help="Subset of the HF dataset.")
|
||||
hf_group.add_argument("--hf-split", type=str, default=None, help="Split of the HF dataset.")
|
||||
hf_group.add_argument(
|
||||
"--hf-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Name of the dataset on HuggingFace "
|
||||
"(e.g., 'lmarena-ai/VisionArena-Chat'). "
|
||||
"Specify this if your dataset-path is a local path."
|
||||
),
|
||||
)
|
||||
hf_group.add_argument(
|
||||
"--hf-output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the output lengths " "from the sampled HF dataset.",
|
||||
)
|
||||
|
||||
prefix_repetition_group = parser.add_argument_group("prefix repetition dataset options")
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-prefix-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of prefix tokens per request, used only for prefix " "repetition dataset.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-suffix-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of suffix tokens per request, used only for prefix "
|
||||
"repetition dataset. Total input length is prefix_len + suffix_len.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-num-prefixes",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of prefixes to generate, used only for prefix repetition "
|
||||
"dataset. Prompts per prefix is num_requests // num_prefixes.",
|
||||
)
|
||||
prefix_repetition_group.add_argument(
|
||||
"--prefix-repetition-output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Number of output tokens per request, used only for prefix " "repetition dataset.",
|
||||
)
|
702
fastdeploy/entrypoints/cli/benchmark/endpoint_request_func.py
Normal file
702
fastdeploy/entrypoints/cli/benchmark/endpoint_request_func.py
Normal file
@@ -0,0 +1,702 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/backend_request_func.py
|
||||
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
import aiohttp
|
||||
from tqdm.asyncio import tqdm
|
||||
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RequestFuncInput:
|
||||
"""Input for requesting LLMs via API"""
|
||||
|
||||
no: int
|
||||
prompt: str
|
||||
history_QA: Optional[dict]
|
||||
hyper_parameters: dict
|
||||
api_url: str
|
||||
prompt_len: int
|
||||
output_len: int
|
||||
model: str
|
||||
model_name: Optional[str] = None
|
||||
logprobs: Optional[int] = None
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
debug: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class RequestFuncOutput:
|
||||
"""Output for requesting LLMs via API"""
|
||||
|
||||
no: int = 0
|
||||
generated_text: str = ""
|
||||
reasoning_content: str = ""
|
||||
success: bool = False
|
||||
latency: float = 0.0
|
||||
output_tokens: int = 0
|
||||
ttft: float = 0.0 # Time to first token
|
||||
arrival_time: list = field(default_factory=list) # arrival_time
|
||||
itl: list = field(default_factory=list) # list of inter-token latencies
|
||||
tpot: float = 0.0 # avg next-token latencies
|
||||
prompt_len: int = 0
|
||||
prompt_tokens: int = 0 # 推理侧返回输入token数
|
||||
error: str = ""
|
||||
|
||||
|
||||
async def async_request_eb_openai_chat_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using EB OpenAI"""
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), "OpenAI Chat Completions API URL must end with 'completions'."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"messages": request_func_input.history_QA,
|
||||
"stream": True,
|
||||
"stream_options": {
|
||||
"include_usage": True,
|
||||
"continuous_usage_stats": True,
|
||||
},
|
||||
}
|
||||
# 超参由yaml传入
|
||||
payload.update(request_func_input.hyper_parameters)
|
||||
|
||||
if request_func_input.ignore_eos:
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
|
||||
if request_func_input.debug:
|
||||
print(f"payload:{json.dumps(payload, ensure_ascii=False)}")
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = 0
|
||||
output.no = request_func_input.no
|
||||
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
# print("####chunk:", chunk, type(chunk))
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get("content")
|
||||
reason_content = choices[0]["delta"].get("reasoning_content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
# cached_tokens
|
||||
output.prompt_len = (
|
||||
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
|
||||
)
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
output.generated_text += content or ""
|
||||
output.reasoning_content += reason_content or ""
|
||||
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
|
||||
elif usage := data.get("usage", {}):
|
||||
output.output_tokens = usage.get("completion_tokens", 0)
|
||||
output.prompt_tokens = usage.get("prompt_tokens", 0)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
# output.generated_text = generated_text
|
||||
if output.generated_text.strip() == "":
|
||||
output.success = False
|
||||
output.error = "No generated text found!"
|
||||
else:
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
error_text = await response.text()
|
||||
print(
|
||||
"####error response:",
|
||||
error_text,
|
||||
"####payload:",
|
||||
payload,
|
||||
)
|
||||
output.error = error_text or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
# 保存失败请求结果
|
||||
if not output.success:
|
||||
with open("error_output.txt", "a") as f:
|
||||
f.write(str(output) + "\n")
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
if request_func_input.debug:
|
||||
print("#####final_output:", output)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_eb_openai_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using EB OpenAI"""
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"stream": True,
|
||||
"stream_options": {
|
||||
"include_usage": True,
|
||||
"continuous_usage_stats": True,
|
||||
},
|
||||
}
|
||||
# 超参由yaml传入
|
||||
payload.update(request_func_input.hyper_parameters)
|
||||
|
||||
if request_func_input.ignore_eos:
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
|
||||
if request_func_input.debug:
|
||||
print("payload:", json.dumps(payload, ensure_ascii=False))
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
output.no = request_func_input.no
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
first_chunk_received = False
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
# print("####chunk:", chunk, chunk.usage)
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
# NOTE: Some completion API might have a last
|
||||
# usage summary response without a token so we
|
||||
# want to check a token was generated
|
||||
if choices := data.get("choices"):
|
||||
# Note that text could be empty here
|
||||
# e.g. for special tokens
|
||||
text = choices[0].get("text")
|
||||
|
||||
# First token
|
||||
if not first_chunk_received:
|
||||
first_chunk_received = True
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += text or ""
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
|
||||
elif usage := data.get("usage"):
|
||||
output.prompt_tokens = usage.get("prompt_tokens")
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
else:
|
||||
output.success = False
|
||||
output.error = (
|
||||
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
|
||||
)
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.latency = most_recent_timestamp - st
|
||||
|
||||
if output.generated_text == "":
|
||||
output.success = False
|
||||
output.error = "No generated text found!"
|
||||
else:
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if request_func_input.debug:
|
||||
print(f"final_output:{output}")
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_tgi(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using the TGI API"""
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
params = {
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"do_sample": True,
|
||||
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
||||
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
||||
"truncate": request_func_input.prompt_len,
|
||||
"ignore_eos_token": request_func_input.ignore_eos,
|
||||
}
|
||||
payload = {
|
||||
"inputs": request_func_input.prompt,
|
||||
"parameters": params,
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
if request_func_input.ignore_eos:
|
||||
output.output_tokens = request_func_input.output_len
|
||||
else:
|
||||
output.output_tokens = None
|
||||
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
chunk_bytes = chunk_bytes.decode("utf-8")
|
||||
|
||||
# NOTE: Sometimes TGI returns a ping response without
|
||||
# any data, we should skip it.
|
||||
if chunk_bytes.startswith(":"):
|
||||
continue
|
||||
chunk = chunk_bytes.removeprefix("data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
output.arrival_time.append(data["arrival_time"])
|
||||
|
||||
output.latency = most_recent_timestamp - st
|
||||
output.success = True
|
||||
output.generated_text = data["generated_text"]
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_trt_llm(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using TRT's llm_server"""
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"accumulate_tokens": True,
|
||||
"text_input": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"top_p": 1.0,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
}
|
||||
if request_func_input.ignore_eos:
|
||||
payload["min_length"] = request_func_input.output_len
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
output.generated_text += data["text_output"]
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.latency = most_recent_timestamp - st
|
||||
output.success = True
|
||||
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using Deepspeed MII"""
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
|
||||
payload = {
|
||||
"prompt": request_func_input.prompt,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
||||
"top_p": 1.0,
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
|
||||
# will use 0 as placeholder.
|
||||
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
|
||||
output.ttft = 0
|
||||
|
||||
st = time.perf_counter()
|
||||
try:
|
||||
async with session.post(url=request_func_input.api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
if "choices" in parsed_resp:
|
||||
output.generated_text = parsed_resp["choices"][0]["text"]
|
||||
elif "text" in parsed_resp:
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
else:
|
||||
output.error = "Unexpected response format: " "neither 'choices' nor 'text' found"
|
||||
output.success = False
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using OpenAI"""
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
|
||||
"prompt": request_func_input.prompt,
|
||||
# "temperature": 0.0,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"logprobs": request_func_input.logprobs,
|
||||
"stream": True,
|
||||
# "stream_options": {
|
||||
# "include_usage": True,
|
||||
# },
|
||||
}
|
||||
if request_func_input.ignore_eos:
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
first_chunk_received = False
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
# print("####chunk:", chunk, type(chunk))
|
||||
data = json.loads(chunk)
|
||||
|
||||
# NOTE: Some completion API might have a last
|
||||
# usage summary response without a token so we
|
||||
# want to check a token was generated
|
||||
if choices := data.get("choices"):
|
||||
# Note that text could be empty here
|
||||
# e.g. for special tokens
|
||||
text = choices[0].get("text")
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if not first_chunk_received:
|
||||
first_chunk_received = True
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += text or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
else:
|
||||
output.success = False
|
||||
output.error = (
|
||||
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
|
||||
)
|
||||
output.generated_text = generated_text
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
"""Request an LLM using OpenAI"""
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("transcriptions", "translations")
|
||||
), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True,
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
buffer = io.BytesIO()
|
||||
soundfile.write(buffer, y, sr, format="WAV")
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field("file", f, content_type="audio/wav")
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, data=form, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get("content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
ASYNC_REQUEST_FUNCS = {
|
||||
"tgi": async_request_tgi,
|
||||
"vllm": async_request_openai_completions,
|
||||
"lmdeploy": async_request_openai_completions,
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_eb_openai_completions,
|
||||
"openai-chat": async_request_eb_openai_chat_completions,
|
||||
"openai-audio": async_request_openai_audio,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
k
|
||||
for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v
|
||||
in (
|
||||
async_request_openai_completions,
|
||||
async_request_eb_openai_chat_completions,
|
||||
)
|
||||
]
|
153
fastdeploy/entrypoints/cli/benchmark/latency.py
Normal file
153
fastdeploy/entrypoints/cli/benchmark/latency.py
Normal file
@@ -0,0 +1,153 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/benchmarks/latency.py
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
import fastdeploy.envs as envs
|
||||
from fastdeploy.engine.args_utils import EngineArgs
|
||||
from fastdeploy.entrypoints.cli.benchmark.base import BenchmarkSubcommandBase
|
||||
|
||||
|
||||
def add_cli_args(parser: argparse.ArgumentParser):
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
parser.add_argument(
|
||||
"--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.",
|
||||
)
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument(
|
||||
"--num-iters-warmup",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument("--num-iters", type=int, default=30, help="Number of iterations to run.")
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to save the latency results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize responses (i.e. do not include " "detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
# V1 enables prefix caching by default which skews the latency
|
||||
# numbers. We need to disable prefix caching by default.
|
||||
parser.set_defaults(enable_prefix_caching=False)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
|
||||
raise OSError(
|
||||
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
|
||||
"Please set it to a valid path to use torch profiler."
|
||||
)
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
|
||||
# Lazy import to avoid importing LLM when the bench command is not selected.
|
||||
from fastdeploy import LLM, SamplingParams
|
||||
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.cfg.max_model_len >= (args.input_len + args.output_len), (
|
||||
"Please ensure that max_model_len is greater than" " the sum of input_len and output_len."
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
max_tokens=args.output_len,
|
||||
)
|
||||
dummy_prompt_token_ids = np.random.randint(10000, size=(args.batch_size, args.input_len))
|
||||
dummy_prompts = [{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
def llm_generate():
|
||||
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False, stream=True)
|
||||
|
||||
def run_to_completion():
|
||||
start_time = time.perf_counter()
|
||||
llm_generate()
|
||||
end_time = time.perf_counter()
|
||||
latency = end_time - start_time
|
||||
return latency
|
||||
|
||||
print("Warming up...")
|
||||
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
|
||||
run_to_completion()
|
||||
|
||||
if args.profile:
|
||||
print("Profiling...")
|
||||
run_to_completion()
|
||||
return
|
||||
|
||||
# Benchmark.
|
||||
latencies = []
|
||||
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
|
||||
latencies.append(run_to_completion())
|
||||
latencies = np.array(latencies)
|
||||
percentages = [10, 25, 50, 75, 90, 99]
|
||||
percentiles = np.percentile(latencies, percentages)
|
||||
print(f"Avg latency: {np.mean(latencies)} seconds")
|
||||
for percentage, percentile in zip(percentages, percentiles):
|
||||
print(f"{percentage}% percentile latency: {percentile} seconds")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
results = {
|
||||
"avg_latency": np.mean(latencies),
|
||||
"latencies": latencies.tolist(),
|
||||
"percentiles": dict(zip(percentages, percentiles.tolist())),
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
|
||||
|
||||
class BenchmarkLatencySubcommand(BenchmarkSubcommandBase):
|
||||
"""The `latency` subcommand for fastdeploy bench."""
|
||||
|
||||
name = "latency"
|
||||
help = "Benchmark the latency of a single batch of requests."
|
||||
|
||||
@classmethod
|
||||
def add_cli_args(cls, parser: argparse.ArgumentParser) -> None:
|
||||
add_cli_args(parser)
|
||||
|
||||
@staticmethod
|
||||
def cmd(args: argparse.Namespace) -> None:
|
||||
main(args)
|
160
fastdeploy/entrypoints/cli/benchmark/main.py
Normal file
160
fastdeploy/entrypoints/cli/benchmark/main.py
Normal file
@@ -0,0 +1,160 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/cli/benchmark/main.py
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import subprocess
|
||||
import sys
|
||||
import typing
|
||||
|
||||
from fastdeploy.entrypoints.cli.benchmark.base import BenchmarkSubcommandBase
|
||||
from fastdeploy.entrypoints.cli.types import CLISubcommand
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from fastdeploy.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
FD_SUBCMD_PARSER_EPILOG = (
|
||||
"Tip: Use `fastdeploy [serve|run-batch|bench <bench_type>] "
|
||||
"--help=<keyword>` to explore arguments from help.\n"
|
||||
" - To view a argument group: --help=ModelConfig\n"
|
||||
" - To view a single argument: --help=max-num-seqs\n"
|
||||
" - To search by keyword: --help=max\n"
|
||||
" - To list all groups: --help=listgroup\n"
|
||||
" - To view help with pager: --help=page"
|
||||
)
|
||||
|
||||
|
||||
def _output_with_pager(text: str):
|
||||
"""Output text using scrolling view if available and appropriate."""
|
||||
|
||||
pagers = ["less -R", "more"]
|
||||
for pager_cmd in pagers:
|
||||
try:
|
||||
proc = subprocess.Popen(pager_cmd.split(), stdin=subprocess.PIPE, text=True)
|
||||
proc.communicate(input=text)
|
||||
return
|
||||
except (subprocess.SubprocessError, OSError, FileNotFoundError):
|
||||
continue
|
||||
|
||||
# No pager worked, fall back to normal print
|
||||
print(text)
|
||||
|
||||
|
||||
def show_filtered_argument_or_group_from_help(parser: argparse.ArgumentParser, subcommand_name: list[str]):
|
||||
|
||||
# Only handle --help=<keyword> for the current subcommand.
|
||||
# Since subparser_init() runs for all subcommands during CLI setup,
|
||||
# we skip processing if the subcommand name is not in sys.argv.
|
||||
# sys.argv[0] is the program name. The subcommand follows.
|
||||
# e.g., for `vllm bench latency`,
|
||||
# sys.argv is `['vllm', 'bench', 'latency', ...]`
|
||||
# and subcommand_name is "bench latency".
|
||||
if len(sys.argv) <= len(subcommand_name) or sys.argv[1 : 1 + len(subcommand_name)] != subcommand_name:
|
||||
return
|
||||
|
||||
for arg in sys.argv:
|
||||
if arg.startswith("--help="):
|
||||
search_keyword = arg.split("=", 1)[1]
|
||||
|
||||
# Enable paged view for full help
|
||||
if search_keyword == "page":
|
||||
help_text = parser.format_help()
|
||||
_output_with_pager(help_text)
|
||||
sys.exit(0)
|
||||
|
||||
# List available groups
|
||||
if search_keyword == "listgroup":
|
||||
output_lines = ["\nAvailable argument groups:"]
|
||||
for group in parser._action_groups:
|
||||
if group.title and not group.title.startswith("positional arguments"):
|
||||
output_lines.append(f" - {group.title}")
|
||||
if group.description:
|
||||
output_lines.append(" " + group.description.strip())
|
||||
output_lines.append("")
|
||||
_output_with_pager("\n".join(output_lines))
|
||||
sys.exit(0)
|
||||
|
||||
# For group search
|
||||
formatter = parser._get_formatter()
|
||||
for group in parser._action_groups:
|
||||
if group.title and group.title.lower() == search_keyword.lower():
|
||||
formatter.start_section(group.title)
|
||||
formatter.add_text(group.description)
|
||||
formatter.add_arguments(group._group_actions)
|
||||
formatter.end_section()
|
||||
_output_with_pager(formatter.format_help())
|
||||
sys.exit(0)
|
||||
|
||||
# For single arg
|
||||
matched_actions = []
|
||||
|
||||
for group in parser._action_groups:
|
||||
for action in group._group_actions:
|
||||
# search option name
|
||||
if any(search_keyword.lower() in opt.lower() for opt in action.option_strings):
|
||||
matched_actions.append(action)
|
||||
|
||||
if matched_actions:
|
||||
header = f"\nParameters matching '{search_keyword}':\n"
|
||||
formatter = parser._get_formatter()
|
||||
formatter.add_arguments(matched_actions)
|
||||
_output_with_pager(header + formatter.format_help())
|
||||
sys.exit(0)
|
||||
|
||||
print(f"\nNo group or parameter matching '{search_keyword}'")
|
||||
print("Tip: use `--help=listgroup` to view all groups.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class BenchmarkSubcommand(CLISubcommand):
|
||||
"""The `bench` subcommand for the vLLM CLI."""
|
||||
|
||||
name = "bench"
|
||||
help = "fastdeploy bench subcommand."
|
||||
|
||||
@staticmethod
|
||||
def cmd(args: argparse.Namespace) -> None:
|
||||
args.dispatch_function(args)
|
||||
|
||||
def validate(self, args: argparse.Namespace) -> None:
|
||||
pass
|
||||
|
||||
def subparser_init(self, subparsers: argparse._SubParsersAction) -> FlexibleArgumentParser:
|
||||
bench_parser = subparsers.add_parser(
|
||||
self.name, help=self.help, description=self.help, usage="fastdeploy bench <bench_type> [options]"
|
||||
)
|
||||
bench_subparsers = bench_parser.add_subparsers(required=True, dest="bench_type")
|
||||
|
||||
for cmd_cls in BenchmarkSubcommandBase.__subclasses__():
|
||||
cmd_subparser = bench_subparsers.add_parser(
|
||||
cmd_cls.name,
|
||||
help=cmd_cls.help,
|
||||
description=cmd_cls.help,
|
||||
usage=f"fastdeploy bench {cmd_cls.name} [options]",
|
||||
)
|
||||
cmd_subparser.set_defaults(dispatch_function=cmd_cls.cmd)
|
||||
cmd_cls.add_cli_args(cmd_subparser)
|
||||
show_filtered_argument_or_group_from_help(cmd_subparser, ["bench", cmd_cls.name])
|
||||
cmd_subparser.epilog = FD_SUBCMD_PARSER_EPILOG
|
||||
return bench_parser
|
||||
|
||||
|
||||
def cmd_init() -> list[CLISubcommand]:
|
||||
return [BenchmarkSubcommand()]
|
1229
fastdeploy/entrypoints/cli/benchmark/serve.py
Normal file
1229
fastdeploy/entrypoints/cli/benchmark/serve.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -21,11 +21,13 @@ import importlib.metadata
|
||||
|
||||
|
||||
def main():
|
||||
import fastdeploy.entrypoints.cli.benchmark.main
|
||||
import fastdeploy.entrypoints.cli.openai
|
||||
from fastdeploy.utils import FlexibleArgumentParser
|
||||
|
||||
CMD_MODULES = [
|
||||
fastdeploy.entrypoints.cli.openai,
|
||||
fastdeploy.entrypoints.cli.benchmark.main,
|
||||
]
|
||||
|
||||
parser = FlexibleArgumentParser(description="FastDeploy CLI")
|
||||
@@ -33,7 +35,7 @@ def main():
|
||||
"-v",
|
||||
"--version",
|
||||
action="version",
|
||||
version=importlib.metadata.version("fastdeploy"),
|
||||
version=importlib.metadata.version("fastdeploy-gpu"),
|
||||
)
|
||||
subparsers = parser.add_subparsers(required=False, dest="subparser")
|
||||
cmds = {}
|
||||
|
@@ -18,7 +18,7 @@ class TestCliMain(unittest.TestCase):
|
||||
cli_main()
|
||||
|
||||
# Verify version check
|
||||
mock_metadata.version.assert_called_once_with("fastdeploy")
|
||||
mock_metadata.version.assert_called_once_with("fastdeploy-gpu")
|
||||
mock_args.dispatch_function.assert_called_once()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user