mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
594 lines
20 KiB
Python
594 lines
20 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_dataset.py
|
|
import argparse
|
|
import base64
|
|
import io
|
|
import json
|
|
import logging
|
|
import random
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Mapping
|
|
from contextlib import suppress
|
|
from dataclasses import dataclass
|
|
from io import BytesIO
|
|
from typing import Any, Optional, Union
|
|
|
|
from fontTools.feaLib import ast
|
|
from PIL import Image
|
|
|
|
from fastdeploy.utils import FlexibleArgumentParser
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class SampleRequest:
|
|
"""
|
|
Represents a single inference request for benchmarking.
|
|
"""
|
|
|
|
no: int
|
|
prompt: Union[str, Any]
|
|
history_QA: Union[str, Any]
|
|
json_data: Optional[dict]
|
|
prompt_len: int
|
|
expected_output_len: int
|
|
|
|
|
|
class BenchmarkDataset(ABC):
|
|
"""BenchmarkDataset"""
|
|
|
|
DEFAULT_SEED = 0
|
|
IS_MULTIMODAL = False
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_path: Optional[str] = None,
|
|
random_seed: int = DEFAULT_SEED,
|
|
shuffle: bool = False,
|
|
hyperparameter_path: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Initialize the BenchmarkDataset with an optional dataset path and random
|
|
seed. Args:
|
|
dataset_path (Optional[str]): Path to the dataset. If None, it
|
|
indicates that a default or random dataset might be used.
|
|
random_seed (int): Seed value for reproducible shuffling or
|
|
sampling. Defaults to DEFAULT_SEED.
|
|
"""
|
|
self.dataset_path = dataset_path
|
|
# Set the random seed, ensuring that a None value is replaced with the
|
|
# default seed.
|
|
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
|
|
self.data = None
|
|
self.shuffle = shuffle
|
|
self.hyperparameter_path = hyperparameter_path
|
|
self.hyperparameters = {}
|
|
|
|
def load_data(self) -> None:
|
|
"""
|
|
Load data from the dataset path into self.data.
|
|
|
|
This method must be overridden by subclasses since the method to load
|
|
data will vary depending on the dataset format and source.
|
|
|
|
Raises:
|
|
NotImplementedError: If a subclass does not implement this method.
|
|
"""
|
|
# TODO (jenniferzhao): add support for downloading data
|
|
raise NotImplementedError("load_data must be implemented in subclasses.")
|
|
|
|
@abstractmethod
|
|
def sample(self, num_requests: int) -> list[SampleRequest]:
|
|
"""
|
|
Abstract method to generate sample requests from the dataset.
|
|
|
|
Subclasses must override this method to implement dataset-specific logic
|
|
for generating a list of SampleRequest objects.
|
|
|
|
Args:
|
|
num_requests (int): The number of sample requests to generate.
|
|
|
|
Returns:
|
|
list[SampleRequest]: A list of sample requests generated from the
|
|
dataset.
|
|
"""
|
|
raise NotImplementedError("sample must be implemented in subclasses.")
|
|
|
|
def maybe_oversample_requests(self, requests: list[SampleRequest], num_requests: int) -> None:
|
|
"""
|
|
Oversamples the list of requests if its size is less than the desired
|
|
number.
|
|
|
|
Args:
|
|
requests (List[SampleRequest]): The current list of sampled
|
|
requests. num_requests (int): The target number of requests.
|
|
"""
|
|
if len(requests) < num_requests:
|
|
random.seed(self.random_seed)
|
|
additional = random.choices(requests, k=num_requests - len(requests))
|
|
requests.extend(additional)
|
|
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
|
|
|
|
|
def is_valid_sequence(
|
|
prompt_len: int,
|
|
output_len: int,
|
|
min_len: int = 4,
|
|
max_prompt_len: int = 1024,
|
|
max_total_len: int = 2048,
|
|
skip_min_output_len_check: bool = False,
|
|
) -> bool:
|
|
"""
|
|
Validate a sequence based on prompt and output lengths.
|
|
|
|
Default pruning criteria are copied from the original `sample_hf_requests`
|
|
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
|
from `sample_requests` in benchmark_throughput.py.
|
|
"""
|
|
# Check for invalid conditions
|
|
prompt_too_short = prompt_len < min_len
|
|
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
|
|
prompt_too_long = prompt_len > max_prompt_len
|
|
combined_too_long = (prompt_len + output_len) > max_total_len
|
|
|
|
# Return True if none of the invalid conditions are met
|
|
return not (prompt_too_short or output_too_short or prompt_too_long or combined_too_long)
|
|
|
|
|
|
def process_image(image: Any) -> Mapping[str, Any]:
|
|
"""
|
|
Process a single image input and return a multimedia content dictionary.
|
|
|
|
Supports three input types:
|
|
|
|
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
|
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
|
|
|
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
|
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
|
a dictionary with the image as a base64 data URL.
|
|
|
|
3. String input: - Treats the string as a URL or local file path. -
|
|
Prepends "file://" if the string doesn't start with "http://" or
|
|
"file://". - Returns a dictionary with the image URL.
|
|
|
|
Raises:
|
|
ValueError: If the input is not a supported type.
|
|
"""
|
|
if isinstance(image, dict) and "bytes" in image:
|
|
image = Image.open(BytesIO(image["bytes"]))
|
|
if isinstance(image, Image.Image):
|
|
image = image.convert("RGB")
|
|
with io.BytesIO() as image_data:
|
|
image.save(image_data, format="JPEG")
|
|
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
|
|
}
|
|
|
|
if isinstance(image, str):
|
|
image_url = image if image.startswith(("http://", "file://")) else f"file://{image}"
|
|
return {"type": "image_url", "image_url": {"url": image_url}}
|
|
|
|
raise ValueError(
|
|
f"Invalid image input {image}. Must be a PIL.Image.Image" " or str or dictionary with raw image bytes."
|
|
)
|
|
|
|
|
|
class EBDataset(BenchmarkDataset):
|
|
"""
|
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
|
sample requests based on conversation turns.
|
|
"""
|
|
|
|
temperature: float
|
|
repetition_penalty: float
|
|
frequency_penalty: float
|
|
presence_penalty: float
|
|
top_p: float
|
|
prompt_len: int
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.load_data()
|
|
|
|
def load_data(self) -> None:
|
|
if self.dataset_path is None:
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
|
|
|
if self.shuffle:
|
|
random.seed(self.random_seed)
|
|
random.shuffle(self.data)
|
|
|
|
def sample(
|
|
self,
|
|
num_requests: int,
|
|
lora_path: Optional[str] = None,
|
|
max_loras: Optional[int] = None,
|
|
output_len: Optional[int] = None,
|
|
enable_multimodal_chat: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
samples: list = []
|
|
cnt = 1
|
|
for entry in self.data:
|
|
if len(samples) >= num_requests:
|
|
break
|
|
prompt = entry["text"]
|
|
self.temperature = float(entry["temperature"])
|
|
self.repetition_penalty = float(entry["penalty_score"])
|
|
self.frequency_penalty = float(entry["frequency_score"])
|
|
self.presence_penalty = float(entry["presence_score"])
|
|
self.top_p = float(entry["topp"])
|
|
self.prompt_len = int(entry["input_token_num"])
|
|
new_output_len = int(entry["max_dec_len"])
|
|
|
|
if enable_multimodal_chat:
|
|
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
|
samples.append(
|
|
SampleRequest(
|
|
no=cnt,
|
|
prompt=prompt,
|
|
prompt_len=self.prompt_len,
|
|
history_QA=[],
|
|
expected_output_len=new_output_len,
|
|
)
|
|
)
|
|
cnt += 1
|
|
|
|
self.maybe_oversample_requests(samples, num_requests)
|
|
return samples
|
|
|
|
|
|
class EBChatDataset(BenchmarkDataset):
|
|
"""
|
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
|
sample requests based on conversation turns.
|
|
"""
|
|
|
|
prompt_len: int
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.load_data()
|
|
|
|
def load_data(self) -> None:
|
|
if self.dataset_path is None:
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
|
|
|
if self.shuffle:
|
|
random.seed(self.random_seed)
|
|
random.shuffle(self.data)
|
|
|
|
def sample(
|
|
self,
|
|
num_requests: int,
|
|
lora_path: Optional[str] = None,
|
|
max_loras: Optional[int] = None,
|
|
output_len: Optional[int] = None,
|
|
enable_multimodal_chat: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
samples: list = []
|
|
cnt = 1
|
|
for entry in self.data:
|
|
if len(samples) >= num_requests:
|
|
break
|
|
json_data = entry
|
|
prompt = entry["messages"][-1].get("content", "")
|
|
history_QA = entry.get("messages", [])
|
|
new_output_len = int(entry.get("max_tokens", 12288))
|
|
|
|
if enable_multimodal_chat:
|
|
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
|
samples.append(
|
|
SampleRequest(
|
|
no=cnt,
|
|
json_data=json_data,
|
|
prompt=prompt,
|
|
prompt_len=0,
|
|
history_QA=history_QA,
|
|
expected_output_len=new_output_len,
|
|
)
|
|
)
|
|
cnt += 1
|
|
|
|
self.maybe_oversample_requests(samples, num_requests)
|
|
return samples
|
|
|
|
|
|
class _ValidateDatasetArgs(argparse.Action):
|
|
"""Argparse action to validate dataset name and path compatibility."""
|
|
|
|
def __call__(self, parser, namespace, values, option_string=None):
|
|
setattr(namespace, self.dest, values)
|
|
|
|
# Get current values of both dataset_name and dataset_path
|
|
dataset_name = getattr(namespace, "dataset_name", "random")
|
|
dataset_path = getattr(namespace, "dataset_path", None)
|
|
|
|
# Validate the combination
|
|
if dataset_name == "random" and dataset_path is not None:
|
|
parser.error(
|
|
"Cannot use 'random' dataset with --dataset-path. "
|
|
"Please specify the appropriate --dataset-name (e.g., "
|
|
"'sharegpt', 'custom', 'sonnet') for your dataset file: "
|
|
f"{dataset_path}"
|
|
)
|
|
|
|
|
|
def get_samples(args):
|
|
"""Get the sample requests from the specified dataset."""
|
|
if not hasattr(args, "request_id_prefix"):
|
|
args.request_id_prefix = ""
|
|
|
|
# For datasets that follow a similar structure, use a mapping.
|
|
dataset_mapping = {
|
|
"EB": lambda: EBDataset(random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle).sample(
|
|
num_requests=args.num_prompts,
|
|
output_len=args.sharegpt_output_len,
|
|
),
|
|
"EBChat": lambda: EBChatDataset(
|
|
random_seed=args.seed, dataset_path=args.dataset_path, shuffle=args.shuffle
|
|
).sample(
|
|
num_requests=args.num_prompts,
|
|
output_len=args.sharegpt_output_len,
|
|
),
|
|
}
|
|
|
|
try:
|
|
input_requests = dataset_mapping[args.dataset_name]()
|
|
except KeyError as err:
|
|
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
|
|
|
|
return input_requests
|
|
|
|
|
|
def add_dataset_parser(parser: FlexibleArgumentParser):
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument(
|
|
"--num-prompts",
|
|
type=int,
|
|
default=1000,
|
|
help="Number of prompts to process.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset-name",
|
|
type=str,
|
|
default="sharegpt",
|
|
choices=[
|
|
"sharegpt",
|
|
"burstgpt",
|
|
"sonnet",
|
|
"random",
|
|
"hf",
|
|
"EB",
|
|
"EBChat",
|
|
],
|
|
help="Name of the dataset to benchmark on.",
|
|
)
|
|
parser.add_argument(
|
|
"--no-stream",
|
|
action="store_true",
|
|
help="Do not load the dataset in streaming mode.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset-path",
|
|
type=str,
|
|
default=None,
|
|
action=_ValidateDatasetArgs,
|
|
help="Path to the sharegpt/sonnet dataset. " "Or the huggingface dataset ID if using HF dataset.",
|
|
)
|
|
parser.add_argument(
|
|
"--no-oversample",
|
|
action="store_true",
|
|
help="Do not oversample if the dataset has " "fewer samples than num-prompts.",
|
|
)
|
|
|
|
# group for dataset specific arguments
|
|
custom_group = parser.add_argument_group("custom dataset options")
|
|
custom_group.add_argument(
|
|
"--custom-output-len",
|
|
type=int,
|
|
default=256,
|
|
help="Number of output tokens per request, used only for custom dataset.",
|
|
)
|
|
custom_group.add_argument(
|
|
"--custom-skip-chat-template",
|
|
action="store_true",
|
|
help="Skip applying chat template to prompt, used only for custom dataset.",
|
|
)
|
|
|
|
spec_bench_group = parser.add_argument_group("spec bench dataset options")
|
|
spec_bench_group.add_argument(
|
|
"--spec-bench-output-len",
|
|
type=int,
|
|
default=256,
|
|
help="Num of output tokens per request, used only for spec bench dataset.",
|
|
)
|
|
spec_bench_group.add_argument(
|
|
"--spec-bench-category",
|
|
type=str,
|
|
default=None,
|
|
help="Category for spec bench dataset. If None, use all categories.",
|
|
)
|
|
|
|
sonnet_group = parser.add_argument_group("sonnet dataset options")
|
|
sonnet_group.add_argument(
|
|
"--sonnet-input-len",
|
|
type=int,
|
|
default=550,
|
|
help="Number of input tokens per request, used only for sonnet dataset.",
|
|
)
|
|
sonnet_group.add_argument(
|
|
"--sonnet-output-len",
|
|
type=int,
|
|
default=150,
|
|
help="Number of output tokens per request, used only for sonnet dataset.",
|
|
)
|
|
sonnet_group.add_argument(
|
|
"--sonnet-prefix-len",
|
|
type=int,
|
|
default=200,
|
|
help="Number of prefix tokens per request, used only for sonnet dataset.",
|
|
)
|
|
|
|
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
|
|
sharegpt_group.add_argument(
|
|
"--sharegpt-output-len",
|
|
type=int,
|
|
default=None,
|
|
help="Output length for each request. Overrides the output length " "from the ShareGPT dataset.",
|
|
)
|
|
|
|
blazedit_group = parser.add_argument_group("blazedit dataset options")
|
|
blazedit_group.add_argument(
|
|
"--blazedit-min-distance",
|
|
type=float,
|
|
default=0.0,
|
|
help="Minimum distance for blazedit dataset. Min: 0, Max: 1.0",
|
|
)
|
|
blazedit_group.add_argument(
|
|
"--blazedit-max-distance",
|
|
type=float,
|
|
default=1.0,
|
|
help="Maximum distance for blazedit dataset. Min: 0, Max: 1.0",
|
|
)
|
|
|
|
random_group = parser.add_argument_group("random dataset options")
|
|
random_group.add_argument(
|
|
"--random-input-len",
|
|
type=int,
|
|
default=1024,
|
|
help="Number of input tokens per request, used only for random sampling.",
|
|
)
|
|
random_group.add_argument(
|
|
"--random-output-len",
|
|
type=int,
|
|
default=128,
|
|
help="Number of output tokens per request, used only for random sampling.",
|
|
)
|
|
random_group.add_argument(
|
|
"--random-range-ratio",
|
|
type=float,
|
|
default=0.0,
|
|
help="Range ratio for sampling input/output length, "
|
|
"used only for random sampling. Must be in the range [0, 1) to define "
|
|
"a symmetric sampling range"
|
|
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
|
)
|
|
random_group.add_argument(
|
|
"--random-prefix-len",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Number of fixed prefix tokens before the random context "
|
|
"in a request. "
|
|
"The total input length is the sum of `random-prefix-len` and "
|
|
"a random "
|
|
"context length sampled from [input_len * (1 - range_ratio), "
|
|
"input_len * (1 + range_ratio)]."
|
|
),
|
|
)
|
|
random_group.add_argument(
|
|
"--random-batch-size",
|
|
type=int,
|
|
default=1,
|
|
help=("Batch size for random sampling. " "Only used for embeddings benchmark."),
|
|
)
|
|
|
|
def _parse_mm_bucket_config(v: object) -> dict[tuple[int, int, int], float]:
|
|
# If already a dict (e.g., programmatic call), normalize keys
|
|
def normalize(d: dict) -> dict[tuple[int, int, int], float]:
|
|
out: dict[tuple[int, int, int], float] = {}
|
|
for k, val in d.items():
|
|
key = k
|
|
if isinstance(key, str):
|
|
with suppress(Exception):
|
|
key = ast.literal_eval(key)
|
|
if not (isinstance(key, tuple) and len(key) == 3 and all(isinstance(x, int) for x in key)):
|
|
raise ValueError(f"Invalid bucket key {k!r}. Expected tuple (H, W, T).")
|
|
out[(int(key[0]), int(key[1]), int(key[2]))] = float(val)
|
|
return out
|
|
|
|
if isinstance(v, dict):
|
|
return normalize(v)
|
|
if isinstance(v, str):
|
|
# Python literal (supports tuple keys)
|
|
parsed = ast.literal_eval(v)
|
|
if not isinstance(parsed, dict):
|
|
raise ValueError("Bucket config must parse to a dict.")
|
|
return normalize(parsed)
|
|
raise ValueError("Unsupported value for --random-mm-bucket-config.")
|
|
|
|
hf_group = parser.add_argument_group("hf dataset options")
|
|
hf_group.add_argument("--hf-subset", type=str, default=None, help="Subset of the HF dataset.")
|
|
hf_group.add_argument("--hf-split", type=str, default=None, help="Split of the HF dataset.")
|
|
hf_group.add_argument(
|
|
"--hf-name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Name of the dataset on HuggingFace "
|
|
"(e.g., 'lmarena-ai/VisionArena-Chat'). "
|
|
"Specify this if your dataset-path is a local path."
|
|
),
|
|
)
|
|
hf_group.add_argument(
|
|
"--hf-output-len",
|
|
type=int,
|
|
default=None,
|
|
help="Output length for each request. Overrides the output lengths " "from the sampled HF dataset.",
|
|
)
|
|
|
|
prefix_repetition_group = parser.add_argument_group("prefix repetition dataset options")
|
|
prefix_repetition_group.add_argument(
|
|
"--prefix-repetition-prefix-len",
|
|
type=int,
|
|
default=256,
|
|
help="Number of prefix tokens per request, used only for prefix " "repetition dataset.",
|
|
)
|
|
prefix_repetition_group.add_argument(
|
|
"--prefix-repetition-suffix-len",
|
|
type=int,
|
|
default=256,
|
|
help="Number of suffix tokens per request, used only for prefix "
|
|
"repetition dataset. Total input length is prefix_len + suffix_len.",
|
|
)
|
|
prefix_repetition_group.add_argument(
|
|
"--prefix-repetition-num-prefixes",
|
|
type=int,
|
|
default=10,
|
|
help="Number of prefixes to generate, used only for prefix repetition "
|
|
"dataset. Prompts per prefix is num_requests // num_prefixes.",
|
|
)
|
|
prefix_repetition_group.add_argument(
|
|
"--prefix-repetition-output-len",
|
|
type=int,
|
|
default=128,
|
|
help="Number of output tokens per request, used only for prefix " "repetition dataset.",
|
|
)
|